ENANTIOSELECTIVE HYDROGENATION IN “SUPERCRITICAL” ETHANE
CONCLUSIONS 5. Baiker, A., Chem. Rev. 99, 453 (1999).
387
6. Savage, P. E., in “Handbook of Heterogeneous Catalysis” (G. Ertl,
H. Kno¨zinger, and J. Weitkamp, Eds.), Vol. 3, p. 1339. Wiley–VCH,
Weinheim, 1997.
7. Kiran, E., and Levelt Sengers, J. M. H. (Eds.), “Supercritical Flu-
ids: Fundamentals for Application.” Kluwer Academic, Dordrecht,
1994.
8. Wandeler, R., and Baiker, A., CATTECH 4, 34 (2000).
9. Subramaniam, B., and McHugh, M. A., Ind. Eng. Chem. Process Des.
Dev. 25, 1 (1986).
10. Rowlinson, J. S., and Swinton, F. L., “Liquids and Liquid Mixtures,”
3rd ed. Butterworth, London, 1982.
11. King, M. B., “Phase Equilibrium in Mixtures.” Pergamon Press,
Oxford, 1969.
12. Sun, Y., Wang, J., LeBlond, C., Landau, R. N., and Blackmond, D. G.,
J. Catal. 161, 759 (1996).
13. Blaser, H. U., Jalett, H. P., Mu¨ller, M., and Studer, M., Catal. Today
37, 441 (1997).
14. Baiker, A., and Blaser, H. U., in “Handbook of Heterogeneous Catal-
ysis” (G. Ertl, H. Kno¨zinger, and J. Weitkamp, Eds.), Vol. 5, p. 2422.
Wiley–VCH, Weinheim, 1997.
We have shown the feasibility of heterogeneously cata-
lyzed continuous enantioselective hydrogenation of an
-
ketoester in dense (“supercritical”) ethane. Very high rates
and good enantioselectivity were achieved by continuous
dosing of small amounts of the chiral modifier CD, though
optimization of the reaction conditions was not attempted.
Elimination of the liquid–gas phase boundary in the reac-
tion system at higher fluid density resulted in a significant
enhancement of reaction rate only at low hydrogen con-
centrations. Generally, high fluid density increased reaction
rate, whereas the effect on ee was less beneficial. Changes
in the composition of the reaction mixture with conversion
had little effect on the phase behavior in the system ethane,
ethyl pyruvate, ethyl lactate, H2.
Experiments performed in the temperature range up
to 140 C showed that enantioselectivity drops strongly,
whereas the reaction rate did not increase as expected
from an Arrhenius-type behavior. This phenomenon is at-
tributed to temperature-induced changes in the adsorption
mode of CD and the partial hydrogenation of the quinoline
moiety.
15. Wells, P. B., and Wilkinson, A. G., Top. Catal. 5, 39 (1998).
16. Bo¨nnemann, H., and Braun, G. A., Chem.-Eur. J. 3, 1200
(1997).
17. Augustine, R. L., and Tanielyan, S. K., J. Mol. Catal. A 118, 79
(1997).
18. Farkas, G., Fodor, K., Tungler, A., Ma`the´, T.,To`th, G., and Sheldon,
R. A., J. Mol. Catal. A 138, 123 (1999).
The study confirms that unambiguous interpretation of
the sometimes striking changes in rate and selectivity of
high-pressure reactions requires a careful analysis of the
phase behavior under reaction conditions. The observed
effects in systems far from a critical point have to be in-
terpreted on the basis of this analysis, contemplating the
unique combination of liquid-like and gas-like qualities
for phases of intermediate density (“supercritical” phases).
The complex phenomena inherent to multicomponent sys-
tems are absent in pure fluids, which difference explains
why the solvent is an inappropriate model for the phase
behavior of a reaction mixture. The combined catalytic
and physicochemical study of EP hydrogenation demon-
strates that the phase behavior of binary systems is an ideal
guide for understanding high-pressure multicomponent
reactions, particularly when weighing model accuracy
against complexity.
19. Margitfalvi, J. L., Talas, E., and Hegedu¨s, M., Chem. Commun., 645
(1999).
20. Bartok, M., Felfo¨ldi, K., To¨ro¨k, B., and Bartok, T., Chem. Commun.,
2605 (1998).
21. Baiker, A., J. Mol. Catal. A 115, 473 (1997).
22. Baiker, A., J. Mol. Catal. A 163, 203 (2000).
23. To¨ro¨k, B., Felfo¨ldi, K., Szakonyi, G., Balazsik, K., and Bartok, M.,
Catal. Lett. 52, 81 (1998).
24. Zuo, X., Liu, H., and Liu, M., Tetrahedron Lett. 39, 1941
(1998).
25. Minder, B., Mallat, T., Pickel, K. H., Steiner, K., and Baiker, A., Catal.
Lett. 34, 1 (1995).
26. Wandeler, R., Ku¨nzle, N., Schneider, M. S., Mallat, T., and Baiker, A.,
Chem. Commun. 7, 673 (2001).
27. Crampon, C., Charbit, G., and Neau, E., J. Supercrit. Fluids 16, 11
(1999).
28. Wandeler, R., and Baiker, A., Chimia 53, 566 (1999).
29. Wandeler, R., and Baiker, A., in “Virtuelle Instrumente in der Praxis:-
Automation” (R. Jamal and R. Heinze, Eds.), p. 75. VDE-Verlag,
Berlin, 2000.
30. Mallat, T., Frauchiger, S., Kooyman, P. J., Schu¨rch, M., and Baiker,
A., Catal. Lett. 63, 121 (1999).
ACKNOWLEDGMENTS
31. Ferri, D., Bu¨rgi, T., Borszeky, K., Mallat, T., and Baiker, A., J. Catal.
193, 139 (2000).
32. Ku¨nzle, N., Hess, R., Mallat, T., and Baiker, A., J. Catal. 186, 239
(1999).
Financial support by the Swiss National Science Foundation and the
Swiss Kommission fu¨r Technologie und Innovation (KTI) is gratefully
acknowledged.
33. Schu¨rch, M., Schwalm, O., Mallat, T., Weber, J., and Baiker, A., J. Catal.
169, 275 (1997).
REFERENCES
34. Mallat, T., Bodnar, Z., Minder, B., Borszeky, K., and Baiker, A.,
J. Catal. 168, 183 (1997).
1. Jessop, P. G., Ikariya, T., and Noyori, R., Chem. Rev. 99, 475 35. Evans, T., Woodhead, A. P., Gutie´rrez-Sosa, A., Thornton, G., Hall,
(1999).
T. J., Davis, A. A., Young, N. A., Wells, P. B., Oldman, R. J.,
˚
2. Brennecke, J. F., and Chateauneuf, J. E., Chem. Rev. 99, 433
(1999).
Plashkevych, O., Vahtras, O., Agren, H., and Carravetta, V., Surf. Sci.
436, L691 (1999).
3. Darr, J. A., and Poliakoff, M., Chem. Rev. 99, 495 (1999).
4. Jessop, P. G., and Leitner, W., (Eds.), “Chemical Synthesis Using Su-
percritical Fluids.” Wiley–VCH, Weinheim, 1999.
36. LeBlond, C., Wang, J., Liu, J., Andrews, A. T., and Sun, Y.-K., J. Am.
Chem. Soc. 121, 4920 (1999).
37. Chrastil, J., J. Phys. Chem. 86, 3016 (1982).