Page 7 of 9
Journal of the American Chemical Society
1
2
3
4
5
other. The I-V slopes indicate the electric resistance of the
Supporting Information
three types of cathodes, that is, RCPANI-Fe-NaCl ≈RCPANI- NaCl
≪
RCPANI. This is consistence with the EIS result illustrated in
Figure S10.
Experimental details and more characterization and results. This
material is available free of charge via the Internet at
An internal comparison has been made with the commercial
Pt/C catalyst. As shown Figure S17, with the JM Pt/C-
catalyzed cathodes, the maximum power output is 450 mW
cm-2 at Pt loading of 0.1 mg cm-2 and is 820 mW cm-2 at 0.3
mg Pt cm-2. The CPANI-Fe-NaCl with the maximum power
output of 600 mW cm-2 show a comparable performance to
that of the commercial Pt/C. In addition, the single cell per-
formances of the different morphology CPANI-Fe-NaCl cata-
lyzed cathodes are evaluated as shown in Figure S18. The
maximum power output is 530 mW cm-2 with the nanotube
CPANI-Fe-NaCl-catalyzed cathode, and is 490 mW cm-2 with
the nanoshell CPANI-Fe-NaCl-catalyzed cathode. The cell
performances observed in these tests are among the best re-
ported world-wide, to date.6 In contrast to efforts that focus on
improving the surface area, the best catalyst found in the pre-
sent work has a BET surface area of only 265.7 m2 g-1, but
exhibits excellent cell performance despite this. This is at-
tributed to the unique advantages of the “shape fixing via salt
recrystallization” method, by which a high microporosity is
achieved, with a high density of ORR active sites located
along the efficient, mass transport pathway (composed of me-
so- and macropores), leading to a high utilization of active
sites.
6
7
8
9
AUTHOR INFORMATION
Corresponding Author
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was financially supported by the China National 973
Program (2012CB720300 and 2012CB215500), by the NSFC of
China (Grant Nos. 21436003 and 51272297).
REFERENCES
(1) (a) Gasteiger, H. A.; Markovic, N. M. Science 2009, 324, 48;
(b) Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.;
Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; Toney, M. F.; Nils-
son, A.. Nature Chem. 2010, 2, 454; (c) Wang, C.; Vliet, D.; More, K.
L.; Zaluzec, N. J.; Peng, S.; Sun, S.-H.; Daimon, H.; Wang, G.-F.;
Greeley, J.; Pearson, J.; Paulikas, A. P.; Karapetrov, G.; Strmcnik, D.;
Markovic, N. M.; Stamenkovic, V. R.. Nano Lett. 2010, 11, 919; (d)
Wu, J.; Zhang, J.; Peng, Z.; Yang, S.; Wagner, F. T.; Yang, H.. J. Am.
Chem. Soc. 2010, 132, 4984.
(2) (a) Bezerra, C. W. B.; Zhang, L.; Lee, K.; Liu, H.; Marques, A.
L. B.; Marques, E. P.; Zhang, J.. Electrochim. Acta 2008, 53, 4937;
(b) Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J-P.. Science 2009,
324, 71; (c) Pylypenko, S.; Mukherjee, S.; Olson, T. S.; Atanassov, P..
Electrochim. Acta 2008, 53, 7875.
(3) Jaouen, F.; Proietti, E.; Lefèvre, M.; Chenitz, R.; Dodelet, J.-P.;
Wu, G.; Zelenay, P.. Energy Environ. Sci. 2011, 4, 114.
(4) (a) Yang, S.-B.; Feng, X.-L.; Wang, X.-C.; Müllen, K.. Angew.
Chem. 2011, 50, 5339; (b) Rao, C.-V.; Cabrera, C.-R.; Ishikawa, Y.. J.
Phys. Chem. Lett. 2010, 1, 2622; (c) Wang, X. B.; Liu, Y. Q.; Zhu,
D. B.; Zhang, L.; Ma, H. Z.; Yao, N.; Zhang, B. L.. J. Phys. Chem. B
2002, 106, 2186.
CONCLUSION
In summary, we have demonstrated a “shape fixing via salt
recrystallization” method to efficiently synthesize N-doped
carbon nanomaterials with a high density of active sites, as an
ORR catalyst. In this method, the NaCl crystal functions as a
fully sealed nanoreactor, facilitating the N incorporation and
graphitization. The gas from gasification in such a closed
nanoreactor produces a large quantity of pores in resultant
samples. As for an Fe-free catalyst, this method makes it pos-
sible for the active sites (activated by planar pyridinic and
pyrrolic N atoms with sp2 hybrid orbitals, which only appear at
the outside fringe of a graphene sheet) to appear in large quan-
tities on the edges of numerous pores, as shown in Figure 5c.
As for an Fe-doping catalyst, the present method benefits for-
mation of more FeNx sites in inner pores and graphitic struc-
ture. A favorable catalyst structure leads to the availability of
efficient mass transport pathways and a high utilization of the
active sites. It results in an excellent ORR activity with a half-
wave potential only 58 mV behind that of Pt/C in an acidic
medium. The PEMFC with the CPANI-Fe-NaCl-catalyzed
cathode outputs a peak power of 600 mW cm-2, which is
among the best for non-precious metal catalysts reported so far
for the ORR. Additionally, no other method is comparable to
this invention, in terms of its high yield per batch of N-doped
carbon catalysts. The “shape fixing via salt recrystallization”
method represents a powerful approach for the preparation of
high-performance carbon nanostructures by confined pyrolysis
of nanopolymers and, more importantly, provides insight into
the design of advanced PEMFC cathode catalysts.
(5) Serov, A.; Artyushkova, K.; Atanassov, P.. Adv. Energy Mater.
2014, 4, 1301735.
(6) (a) Proietti, E.; Jaouen, F.; Lefevre, M.; Larouche, N.; Tian, J.;
Herranz, J.; Dodelet, J. P.. Nat. Commun. 2011, 2, 416; (b) Yuan, S.-
W.; Shui, J.-L.; Grabstanowicz, L.; Chen, C.; Commet, S.; Reprogle,
B.; Xu, T.; Yu, L. P.; Liu, D. J.. Angew. Chem. Int. Ed. 2013, 52,
8349; (c) Tian, J.; Morozan, A.; Sougrati, M. T.; Lefèvre, M.;
Chenitz, R.; Dodelet, J.-P.; Jones, D.; Jaouen, F.. Angew. Chem. Int.
Ed. 2013, 52: 6867.
(7) (a) Wei, Z.-D.; Chen, S. G.; Liu, Y; Sun, C. X.; Shao, Z. G.;
Shen, P. K.. J. Phys. Chem. C 2007, 42, 15456; (b) Zhang, H.; Wang,
X.; Zhang, J.; Zhang, J.. In PEM Fuel Cell Electrocatalysts and Cata-
lyst Layers; Zhang, J., Ed.; Springer London: 2008, 889.
(8) (a) Ignaszak, A.; Ye, S.; Gyenge, E.. J. Phys. Chem. C 2008,
113, 298; (b) Antolini, E.. Appl. Catal, B 2009, 88,1.
(9) Ding, W.; Wei, Z.-D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. -
S.; Wang, D.; Wan, L. -J.; Alvi, S. F.; Li, L.. Angew. Chem. Int. Ed.
2013, 52, 11755.
(10) Zhang, L.J.; Wan, M. X.. Adv. Funct. Mater. 2003, 13, 815.
(11) Kamali, A. R.; Fray. D. J.. Carbon 2013, 56, 121.
(12) Wang, Y.; Guan, X. N.; Wu, C.-Y.; Chen, M.-T.; Hsieh, H.-
H.; Tran, H. D.; Huang, S.-C.; Kaner, R. B.. Polym. Chem. 2013, 4,
4814.
(13) (a) Nabae, Y.; Moriya, S.; Matsubayashi, K.; Lyth, S. M.;
Malon, M.; Wu, L.; Islam, N. M.; Koshigoe, Y.; Kuroki, S.;
ASSOCIATED CONTENT
ACS Paragon Plus Environment