Fig. 8 Reduction of O
HClO
2
at a rotating disk electrode coated with complex 3 after anodic conditioning. (A) current-potential curves in air-saturated 1.0 M
, scan rate = 10 mV s . (B) Levich plot of plateau current vs. square root of the rotation rate for the curves in (A). (C) Koutecky–Levich plot of
−
1
4
the inverse of the plateau current vs. the inverse of the square root of the rotation rate for the curves in (A). The theoretical two- and four-electron lines
are marked n = 2 and 4, respectively.
This seemingly unremarkable finding indicates that the rate of
formation of the Co–O bond is unaffected by electrooxidation of
4 C. Shi and F. C. Anson, J. Am. Chem. Soc., 1991, 113, 9564.
5
J. P. Collman, N. H. Hendricks, K. Kim and S. C. Bencosme, J. Chem.
Soc., Chem. Commun., 1987, 1537; K. M. Kadish, L. Femond, Z. Qu,
J. Shao, C. Shi, F. C. Anson, F. Burdet, C. P. Gros, J.-M. Barbe and R.
Guilard, J. Am. Chem. Soc., 2005, 127, 5625; J. P. Collman, M. Kaplun
and R. A. Decreau, Dalton Trans., 2006, 554.
F. C. Anson, C. Shi and B. Steiger, Acc. Chem. Res., 1997, 30, 437.
C. Shi and F. C. Anson, Inorg. Chem., 1996, 35, 7928.
C. Shi and F. C. Anson, Inorg. Chem., 1992, 31, 5078; B. Steiger, C. Shi
and F. C. Anson, Inorg. Chem., 1993, 32, 2107; H.-Z. Yu, J. S. Baskin,
B. Steiger, F. C. Anson and A. H. Zewail, J. Am. Chem. Soc., 1999, 121,
2
the surface confined complex, 3. Therefore the macrocycle core
seems to be intact after oxidation. The enhanced catalytic ability
resulting from oxidation of the adsorbed complex may result from
formation of a more stable cobalt–peroxo interaction. The role
of the oxidation as well as the resulting structure of the oxidized
complex and the role of Pt(II) in the stabilization of this interaction
is currently being studied.
6
7
8
4
84.
9
B. Steiger and F. C. Anson, Inorg. Chem., 1997, 36, 4138.
Conclusions
10 J. E. Bennett, A. Burewicz, D. E. Wheeler, I. Eliezer, L. Czuchajowski
and T. Malinski, Inorg. Chim. Acta, 1998, 271, 167; T. Abe and M.
Kaneko, Prog. Polym. Sci., 2003, 28, 1441; S. M. Chen and Y. L. Chen,
J. Electroanal. Chem., Interfacial Electrochem., 2004, 373, 277.
1 K. Araki, L. Angnes, C. M. N. Azevedo and H. E. Toma, J. Electroanal.
Chem., 1995, 397, 205.
12 J. M. Vago, V. C. Dall’Orto, E. Farzani, J. Hurst and I. N. Rezzano,
1
To summarize we have synthesized and characterized by
H
NMR, UV-Vis spectroscopy and cyclic voltammetry two new
metalloporphyrins, complexes 2 and 3 (Fig. 1). Adsorption of
these complexes onto EPG electrodes followed by oxidation in
1
Sens. Actuators, B, 2003, 96, 407.
1.0 M HClO
4
results in a new redox active modified electrode
to H and H O. Studies
1
1
3 G. E. Milczarek and A. Ciszewski, Electroanalysis, 2001, 13, 164.
4 H. Winnischofer, S. D. Lima, K. Araki and H. E. Toma, Anal. Chim.
Acta, 2003, 480, 97; A. Ciszewski and G. Milczarek, Talanta, 2003, 61,
11; M. Plonska, K. Winkler, S. Gadde, F. D’Souza and A. L. Balch,
Electroanalysis, 2006, 9, 841.
which electrocatalytically reduces O
are currently underway to probe the effect of the number of
Pt(II) groups coordinated to the porphyrin periphery on the
2
2
O
2
2
electrocatalytic reduction of O in acidic media.
2
1
1
5 S. Swavey, M. Narra and H. Srour, J. Coord. Chem., 2005, 58, 1463.
6 D. Marek, M. Narra, A. Schneider and S. Swavey, Inorg. Chim. Acta,
2
006, 359, 789.
References
1
7 J. H. Price, A. N. Williamson, R. F. Schramm and B. B. Wayland, Inorg.
Chem., 1972, 11, 1280.
1
M. Lefevre, J. P. Dodelet and P. Bertrand, J. Phys. Chem. B, 2005,
09, 16718; S. Yamazaki, Y. Yamada, T. Ioroi, N. Fujiwara, Z. Siroma,
1
18 A. R. Brown, Z. Guo, F. W. J. Mosselmans, S. Parsons, M. Schroder
and L. J. Yellowlees, J. Am. Chem. Soc., 1998, 120, 8805.
19 C. Araullo-McAdams and K. M. Kadish, Inorg. Chem., 1990, 29, 2749.
20 T. Malinski, A. Ciszewski, J. Bennett, J. R. Fish and L. Czuchajowski,
J. Electrochem. Soc., 1991, 138, 2008; C. Ueda, D. C.-S. Tse and T.
Kuwana, Anal. Chem., 1982, 54, 850; F. D’Souza and G. R. Deviprasad,
J. Org. Chem., 2001, 66, 4601.
21 F. Pariente, E. Lorenzo and H. D. Abruna, Anal. Chem., 1994, 66, 4337;
H.-G. Hong and W. Park, Langmuir, 2001, 17, 2485.
22 C. Shi and F. C. Anson, J. Am. Chem. Soc., 1991, 113, 9564.
23 J. Koutecky and V. G. Levich, Zh. Fiz. Khim., 1958, 32, 1565.
24 M. Yuasa, B. Steiger and F. C. Anson, J. Porphyrins Phthalocyanines,
1997, 1, 181.
K. Yasuda and Y. Miyazaki, J. Electroanal. Chem., 2005, 576, 253; J.
Qu, Y. Shen, X. Qu and S. Dong, Electroanalysis, 2004, 16, 1444; N.
Kobayashi and A. W. Nevin, Appl. Organomet. Chem., 1996, 10, 579.
B. Wang, J. Power Sources, 2005, 152, 1.
Z. Liu and F. C. Anson, J. Mol. Catal. A: Chem., 2002, 186, 43; Z. Liu
and F. C. Anson, Inorg. Chem., 2001, 40, 1329; Z. Liu and F. C. Anson,
Inorg. Chem., 2000, 39, 1048; J. P. Collman and K. Kim, J. Am. Chem.
Soc., 1986, 108, 7847; T. Kuwana, M. Fujihira, K. Sunakawa and T.
Osa, J. Electroanal. Chem., Interfacial Electrochem., 1978, 88, 299; A.
Bettelheim and T. Kuwana, Anal. Chem., 1979, 51, 2257; K. Shigehara
and F. C. Anson, J. Phys. Chem., 1982, 86, 2776; S. Popovici, W. Leyffer
and R. Holze, J. Porphyrins Phthalocyanines, 1999, 3, 265.
2
3
This journal is © The Royal Society of Chemistry 2006
Dalton Trans., 2006, 5530–5535 | 5535