11186 J. Phys. Chem. B, Vol. 110, No. 23, 2006
Mano et al.
the polymers of this study do not have an inner-sphere chloride,
no coordinative cross-linking occurred, and the polymers were
more stable under redox cycling. The tether did not stabilize or
destabilize the redox hydrogel.
Acknowledgment. This study was supported by the Office
of Naval Research (N00014-02-1-0144) and by the Welch
Foundation. N.M. thanks The Oronzio de Nora Industrial
Electrochemistry Fellowship of The Electrochemical Society.
Composition. There are four electron-transfer steps in the
wired-laccase-catalyzed electrooxidation of O2. At steady state,
the current associated with each step is necessarily the same.
The currents flowing from the cathode to the polymer (1),
through the redox hydrogel (2), from the polymer to the laccase
molecules (3) and from laccase molecules to O2, are all identical.
The limit of each of these currents is defined by the polymer/
enzyme ratio. The limits of (3) and (4) increase upon increasing
the polymer/enzyme mass ratio, unless the electrostatic adduct
between the polycationic polymer and the polyanonic enzyme
precipitates. The polymer/enzyme mass ratio can be increased
if the specific activity of the enzyme is higher and less enzyme
is required in the optimal composition. If the apparent electron
diffusion coefficient of the polymer is higher and less polymer
mass is required, the ratio can be decreased. Increasing Dapp
thus allowed a decrease in the polymer/enzyme/cross linker ratio
from 1.32 to 1. As in other wired enzyme films, cross-linking
reduces Dapp because the more rigid the gel, the less the
segmental mobility and the frequency of effective collisions of
the redox functions on which Dapp depends. Because the eight-
atom-long tethers increased Dapp 120-fold, we were able to
increase the PEGDGE cross-linker weight fraction to 7.2 wt
References and Notes
(
1) Heller, A. J Phys. Chem. B 1992, 96, 3579.
(2) Katz, E.; Buckmann, A. F.; Willner, I. J. Am. Chem. Soc. 2001,
23, 10752.
3) Mano, N.; Kim, H.-H.; Zhang, Y.; Heller, A. J. Am. Chem. Soc.
002, 124, 6480.
4) Baldini, E.; Dall’Orto, V. C.; Danilowicz, C.; Rezzano, I.; Calvo,
E. J. Electroanalysis 2002, 14, 1157.
5) Katz, E.; Willner, I.; Kotlyar, A. B. J. Electroanal. Chem. 1999,
79, 64.
1
(
2
(
(
4
1
2
(6) Mano, N.; Mao, F.; Heller, A. J. Am. Chem. Soc. 2002, 124, 12962.
(7) Mano, N.; Mao, F.; Heller, A. ChemBioChem 2004, 5, 1703.
(8) Soukharev, V. S.; Mano, N.; Heller, A. J. Am. Chem. Soc. 2004,
26, 8368.
9) Mano, N.; Mao, F.; Heller, A. J. Am. Chem. Soc. 2003, 125, 6588.
10) Cameron, C. G.; Pickup, P. G. J. Am. Chem. Soc. 1999, 121, 11773.
(
(
(11) Cameron, C. G.; Pittman, T. J.; Pickup, P. G. J. Phys. Chem. B
001, 105, 8838.
(12) Gregg, B. A.; Heller, A. J. Phys. Chem. 1991, 95, 5970.
(13) Gregg, B. A.; Heller, A. J. Phys. Chem. 1991, 95, 5976.
(14) Rajagopalan, R.; Aoki, A.; Heller, A. J. Phys. Chem. 1996, 100,
3719.
(15) De Lumley-Woodyear, T.; Rocca, P.; Lindsay, J.; Dror, Y.;
Freeman, A.; Heller, A. Anal. Chem. 1995, 67, 1332.
(16) Forster, R. J.; Vos, J. G.; Lyons, M. E. G. J. Chem. Soc., Faraday
Trans. 1991, 87, 3769.
(17) Forster, R. J.; Vos, J. G.; Lyons, M. E. G. J. Chem. Soc., Faraday
Trans. 1991, 87, 3761.
%
, from the earlier 5 wt %,2,8 and form a leather-like, thick,
and well-adhering cathodic gel.
(
(
18) Forster, R. J.; Vos, J. G. J. Electrochem. Soc. 1992, 139, 1503.
19) Oh, S.-M.; Faulkner, L. R. J. Am. Chem. Soc. 1989, 111, 5613.
Electrooreduction of O2 to Water. The hydrated films of
cross-linked polymer I constitute the best wires of laccase to
date. Because the cathode was now close to being fully covered
by the electrocatalytic film, the O2 flux-limited current density
(20) Oh, S.-M.; Faulkner, L. R. J. Electroanal. Chem. 1989, 269, 77.
(
(
21) Goss, C. A.; Majda, M. J. Electroanal. Chem. 1991, 300, 377.
22) Chidsey, C. E.; Feldman, B. J.; Lundgren, C.; Murray, R. W. Anal.
Chem 1986, 58, 601.
23) Feldman, B. J.; Murray, R. W. Anal. Chem. 1986, 58, 5844.
-2
increased from the earlier reported 560 µA cm (Figure 5, curve
(
2
4
5
), reached with polymer I, (PVI-spacer-[Os(2,2′,6′,2′′-terpyridine-
(24) Feldman, B. J.; Murray, R. W. Inorg. Chem. 1987, 26, 1702.
(25) Dalton, E. F.; Surridge, N. A.; Jernigan, J. C.; Wilbourn, K. O.;
Facci, J. S.; Murray, R. W. Chem. Phys. 1990, 140, 143.
2+/3+
-2
,4′-dimethyl-2,2′-bipyridine)2Cl]
) to 860 µA cm (Figure
, curve 1). When the O2 diffusion to the 7-µm-diameter carbon
(
26) Nishihara, H.; Dalton, F.; Murray, R. W. Anal. Chem. 1991, 63,
2955.
(27) Aoki, A.; Rajagopalan, R.; Heller, A. J. Phys. Chem. 1995, 99,
102.
28) Aoki, A.; Heller, A. J. Phys. Chem. 1993, 97, 11014.
29) Heller, A. Acc. Chem. Res. 1990, 23, 128.
(30) Rajagopalan, R.; Heller, A. Electrical “wiring” of glucose oxidase
fiber cathode was cylindrical, half of the O2 flux-limited current
was reached already at 0.62 V and 90% at 0.56 V vs Ag/AgCl,
merely -0.08 and -0.14 V versus the 0.7 V (Ag/AgCl)
reversible O2/H2O half-cell potential at pH 5. To show that the
laccase-containing hydrogel of polymer I was superior to
platinum in electrocatalyzing the reduction of O2 to water, we
compared, at 37 °C, the polarizations (potential versus the
reversible potential of the O2 /H2O half-cell in the same
electrolyte) of the wired-laccase-coated 7-µm-diameter carbon
fiber (in pH 5 citrate buffer), and of a 6-µm-diameter platinum
fiber (in 0.5 M H2SO4) (Figure 5, curve 3). The Pt fiber reached
5
(
(
in electrons conducting hydrogels. In Molecular Electronics: A Chemistry
for the 21st Century Monograph; Jortner, J., Ratner, M., Eds.; Blackwell
Science Ltd, Cambridge, MA, 1997; p 241.
(31) Blauch, D. N.; Saveant, J.-M. J. Phys. Chem. 1993, 97, 6444.
(32) Blauch, D. N.; Saveant, J.-M. J. Am. Chem. Soc. 1992, 114, 3323.
(
33) Laviron, E. J. J. Electroanal. Chem. 1980, 112, 1.
(34) Andrieux, C. P.; Saveant, J.-M. J. Electroanal. Chem. 1980, 111,
3
77.
(35) Forster, R. J.; Kelly, A. J.; Vos, J. G.; Lyons, M. E. G. J.
Electroanal. Chem. 1989, 270, 365.
36) Forster, R. J.; Vos, J. G. J. Chem. Soc., Faraday Trans. 1991, 87,
863.
-
2
9
0% of the limiting 0.9 mA‚cm current density only at a
polarization of -0.40 V, while the wired-laccase-coated fiber
reached 90% of the limiting O2 electroreduction current density
at a polarization as small as -0.07 V.
(
1
(
(
(
(
(
(
37) Forster, R. J.; Vos, J. G. J. Electroanal. Chem. 1991, 314, 135.
38) Keane, L.; Hogan, C.; Forster, R. J. Langmuir 2002, 18, 4826.
39) Forster, R. J.; Vos, J. G. Electrochim. Acta 1992, 37, 159.
40) Forster, R. J.; Vos, J. G. Langmuir 1994, 10, 4330.
41) Sirkar, K.; Pishko, M. V. Anal. Chem. 1998, 70, 2888.
42) Komura, T.; Kijima, K.; Yamaguchi, T.; Takahashi, K. J. Elec-
Conclusion
The redox polymer described efficiently connects the laccase
reaction centers to electrodes. Its redox potential allows poising
of the O2 cathode just 0.15 V negative to the redox potential of
the laccase copper cluster at pH 5. Its eight-atom-long flexible
spacer arm increases the apparent coefficient of electron
troanal. Chem. 2000, 468, 166.
(43) Bu, H.-Z.; English, A. M.; Mikkelsen, S. R. J. Phys. Chem. B 1997,
101, 9593.
48
(44) Mao, H.; Pickup, P. G. J. Am. Chem. Soc. 1990, 112, 1776.
(45) Jernigan, J. C.; Murray, R. W. J. Am. Chem. Soc. 1987, 109, 1738.
(46) Wilbourn, K.; Murray, R. W. J. Phys. Chem. 1988, 92, 3642.
-
7
2
-1
diffusion to 7.6 × 10 cm s , and the coordination of the
2+/3+
Os
centers with three substituted bipyridines provides
(47) Mao, F.; Mano, N.; Heller, A. J. Am. Chem. Soc. 2002, 125, 4951.
48) Stankovich, M. T.; Schopfer, L. M.; Massey, V. J. Biol. Chem.
978, 253, 4971.
49) Forster, R. J.; Walsh, D. A.; Mano, N.; Mao, F.; Heller, A. Langmuir
(
stability against ligand substitution. The reduced redox centers
deliver electrons to laccase so rapidly and at such a small
potential gradient that the electroreduction of O2 to water is
much better catalyzed than by the classical catalyst, platinum.
1
2
(
004, 20, 862.
(50) Kober, E. M. Inorg. Chem. 1988, 27, 4587.