JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
FIGURE 5 Insensitivity of (a) PFBO and (b) PFBT polymers to 17.2 mM concentrations of DNT.
10 R. Tu, B. Liu, Z. Wang, D. Gao, F. Wang, Q. Fang, Z. Zhang,
Anal. Chem. 2008, 80, 3458–3465.
CONCLUSIONS
In summary, highly efficient quenching of fluorescent nano-
particles has been demonstrated with both TNT and DNT as
analytes. The high sensitivity (as determined by Ksv values)
and selectivity (no response to cyclohexanone or nitroben-
zene), means that such quenching has potentially significant
applications in turn-off detection schemes. Efforts toward
developing such systems are currently in progress and
results will be reported in due course.
11 A. Rose, C. G. Lugmair, Y.-J. Miao, J. Kim, I. A. Levitsky,
V. E. Williams, T. M. Swager, Proc. SPIE Int. Soc. Opt. Eng.
2000, 4038, 512–518.
12 T. L. Andrew, T. M. Swager, J. Polym. Sci., Part B: Polym.
Phys. 2011, 49, 476–498.
13 D. Tuncel, H. V. Demir, Nanoscale 2010, 2, 484–494.
14 Z. Tian, J. Yu, C. Wu, C. Szymanski, J. McNeill, Nanoscale
2010, 2, 1999–2011.
15 Y. Mai, A. Eisenberg, Acc. Chem. Res. 2012, 45, 1657–1666.
16 N. Joumaa, M. Lansalot, A. Theretz, A. Elaissari, A. Sukhanova,
M. Artemyev, I. Nabiev, J. H. M. Cohen, Langmuir 2006, 22, 1810–
1816.
ACKNOWLEDGMENTS
S. Cohen thanks the American Chemical Society Project SEED
for support of this work, and P. Marks thanks the University of
Rhode Island Foundation for support of this work.
17 C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R.
Burnham, J. D. McNeill, D. T. Chiu, J. Am. Chem. Soc. 2010,
132, 15410–15417.
18 S. Satapathi, L. Li, R. Anandakathir, L. A. Samuelson, J.
Kumar, J. Macromol. Sci. Part A: Pure Appl. Chem. 2011, 48,
1049–1054.
REFERENCES AND NOTES
1 S. J. Toal, W. C. Trogler, J. Mater. Chem. 2006, 16, 2871–
19 S. J. Toal, D. Magde, W. C. Trogler, Chem. Commun. 2005,
2883.
5465–5467.
2 A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic,
Nature 2005, 434, 876–879.
20 J. Hu, D. Zhang, S. Jin, S. Z. D. Cheng, F. W. Harris, Chem.
Mater. 2004, 16, 4912–4915.
3 D. Li, J. Liu, R. T. K. Kwok, Z. Liang, B. Z. Tang, J. Yu, Chem.
Commun. 2012, 48, 7167–7169.
21 J. Bouffard, T. M. Swager, Macromolecules 2008, 41, 5559–
5562.
4 R. A. Potyrailo, N. Nagraj, C. Surman, H. Boudries, H. Lai,
J. M. Slocik, N. Kelley-Loughnane, R. R. Naik, Trends Anal.
Chem. 2012, 40, 133–145.
22 C. Szymanski, C. Wu, J. Hooper, M. A. Salazar, A. Perdomo,
A. Dukes, J. McNeill, J. Phys. Chem. B 2005, 109, 8543–8546.
23 H. Sohn, R. M. Calhoun, M. J. Sailor, W.C. Trogler, Angew.
Chem. Int. Ed. Engl. 2001, 40, 2104–2105.
5 M. E. Fisher, M. la Grone, J. Sikes, Proc. SPIE Int. Soc. Opt.
Eng. 2003, 5089, 991–1000.
24 S. Rochat, T. M. Swager, ACS Appl. Mater. Interfaces 2013,
5, 4488–4502.
6 J.-S. Yang, T. M. Swager, J. Am. Chem. Soc. 1998, 120,
11864–11873.
25 P. Bonancia, I. Vaya, M. J. Climent, T. Gustavsson,
D.Markovitsi, M. C. Jimenez, M. A. Miranda, J. Phys. Chem. A
2012, 116, 8807–8814.
7 J.-S. Yang, T. M. Swager, J. Am. Chem. Soc. 1998, 120,
5321–5322.
8 B. Balan, C. Vijayakumar, M. Tsuji, A. Saeki, S. Seki, J. Phys.
Chem. B 2012, 116, 10371–10378.
26 S. Content, W. C. Trogler, M. J. Sailor, Chem. Eur. J. 2000,
6, 2205–2213.
9 J. Geng, P. Liu, B. Liu, G. Guan, Z. Zhang, M.-Y. Han, Chem.
Eur. J. 2010, 16, 3720–3727.
27 S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee,
S. K. Ghosh, Angew. Chem. Int. Ed. Engl. 2013, 52, 2881–2885.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2013, 51, 4150–4155
4155