M.D. Bala et al. / Journal of Organometallic Chemistry 647 (2002) 105–113
113
IR (cm−1): 3920w, 3420s, 3080s, 2950s, 2920s, 2850s,
1980w, 1820w, 1730m, 1660s, 1637s, 1600s, 1500m,
1430m, 1410m, 1370m, 1320m, 1300m, 1250m, 1200m,
1165m, 1150m, 1130m, 1060m, 1045m, 1030m,
1000s, 950m, 905s, 850m, 820m, 770s, 710m, 570s. MS;
m/z (fragment, relative intensity): 425 [M−2THF, 1],
390 [M−2THF−Cl, 16], 306 [CH2ꢀCHCH2CH2-
C5H4SmCl, 6], 120 [CH2ꢀCHCH2CH2C5H5, 31], 71
[THF−1, 1], 65 [Cp−, 6].
a water bath with occasional shaking for a certain
period. After polymerization, the ampoule was opened
and EtOH containing 5% HCl was introduced to termi-
nate the reaction and precipitate the polymer.
Acknowledgements
This project was supported by the special funds for
Major State Basic Research Projects (G1999064801),
National Natural Science Foundation of China
(20072004 and 29871010).
3.3.2. (CH2ꢀCHCH2CH2C5H4)2YꢁCl·2THF (3b)
Light brown oil. Yield: 58%. Anal. Calc. For
C26H38YO2Cl: C, 61.59; H, 7.57. Found: C, 61.70; H,
7.30%. IR (cm−1): 3920w, 3420s, 3080s, 2920s, 2850s,
2750w, 1820w, 1715m, 1660s, 1637s, 1600s, 1500w,
1440m, 1460m, 1410m, 1360m, 1330w 1300w, 1260m,
1200w, 1165w, 1060s, 1045s, 1000s, 905s, 850m, 770s,
680s, 520m. MS; m/z (fragment, relative intensity): 366
[M−2THF+4, 2], 243 [CH2ꢀCHCH2CH2C5H4YCl,
2], 120 [CH2ꢀCHCH2CH2C5H5, 22], 71 [THF−1, 7], 65
[Cp−, 18].
References
[1] P.C. Mohring, N.J. Coville, J. Organomet. Chem. 479 (1994) 1.
[2] H. Yasuda, Prog. Polym. Sci. 25 (2000) 573.
[3] (a) C. Qian, D. Zhu, D.J. Li, J. Organomet. Chem. 430 (1992) 175;
(b) D. Deng, B. Li, C. Qian, Polyhedron 9 (1990) 1453.
[4] (a) W.J. Evans, T.T. Peterson, M.D. Rausch, W.E. Hunter, H.
Zhang, J.L. Atwood, Organometallics 3 (1985) 554;
(b) Yu.K. Gunko, B.M. Bulychev, G.L. Soloveichik, J.
Organomet. Chem. 419 (1991) 299.
3.3.3. (CH2ꢀCHCH2CH2C5H4)2ErꢁCl·2THF (3c)
Pink oil. Yield: 53%. Anal. Calc. for C26H38ErO2Cl:
C, 53.35; H, 6.56. Found: C, 53.60; H, 6.33%. IR
(cm−1): 3920w, 3480s, 3080s, 2950s, 2920s, 2850s,
2740w, 2450w, 2280w, 1980w, 1820w, 1705m, 1637s,
1600s, 1560m, 1540m, 1490m, 1460s, 1360s, 1340m,
1300m, 1260m, 1190m, 1050s, 1045s, 1000s, 905s, 830s,
780s, 680s, 560m. MS; m/z: (fragment, relative inten-
sity): 439 [M−2THF, 9], 404 [M−2THF−Cl, 100],
320 [CH2ꢀCHCH2CH2C5H4ErCl, 76], 120 [CH2ꢀ
CHCH2CH2C5H5, 10], 65 [Cp−, 4].
[5] (a) M.F. Lappert, A. Singh, Inorg. Synth. 27 (1990) 168;
(b) W.J. Evans, R.A. Keyer, J.W. Ziller, J. Organomet. Chem. 394
(1990) 87.
[6] W.A. Herrmann, R. Anwander, F. Munck, W. Scherer, Chem.
Ber. 126 (1993) 331.
[7] J. Okuda, K.E. Du Plooy, P.J. Foscano, J. Organomet. Chem. 495
(1995) 195.
[8] R.E.v.H. Spence, W.E. Piers, Organometallics 14 (1995) 4617.
[9] B. Ji, L. Wang, L. Feng, Y. Qian, J. Huang, Acta Polym. Sin. 5
(1999) 629.
[10] H. Lehmkuhl, J. Na¨ser, G. Mehler, T. Keil, F. Danowski, R. Benn,
R. Mynott, G. Schroth, B. Gabor, C. Kru¨ger, P. Betz, Chem. Ber.
124 (1991) 441.
[11] K.A. Butakoff, D.A. Lemenovskii, P. Mountford, L.G. Kuz’mina,
A.V. Churakov, Polyhedron 15 (1996) 489.
3.3.4. (CH2ꢀCHCH2CH2C5H4)2DyꢁCl·2THF (3d)
Dark red oil. Yield: 57%. Anal. Calc. for
C26H38DyO2Cl: C, 53.78; H, 6.61. Found: C, 53.40; H,
6.22%. IR (cm−1): 3920w, 3500s, 3080s, 2950s, 2920s,
2850s, 1980w, 1820w, 1730m, 1660s, 1600s, 1490m,
1440m, 1410m, 1360m, 1330m, 1300m, 1260m, 1200m,
1150m, 1100m, 1060s, 1045s, 1000s, 905s, 850m, 820s,
780s, 720m, 680m, 640m. MS; m/z (fragment, relative
intensity): 437 [M−2THF, 7], 402 [M−2THF−Cl,
35], 318 [CH2ꢀCHCH2CH2C5H4DyCl, 60], 120 [CH2ꢀ
CHCH2CH2C5H5, 11], 71 [THF−1, 1], 65[Cp−, 3].
[12] G. Erker, R. Aul, Chem. Ber. 124 (1991) 1301.
[13] Y. Qian, G. Li, Y. He, W. Chen, B. Li, S. Chen, J. Mol. Cat. 60
(1990) 19.
[14] C. Mu¨ller, D. Vos, P. Jutzi, J. Organomet. Chem. 600 (2000) 127.
[15] H. Schumann, J.A. Meese-Marktscheffel, L. Esser, Chem. Rev. 95
(1995) 865.
[16] R.J. H. Clark, J. Lewis, D.J. Machin, R.S. Nyholm, J. Chem. Soc.
(1963) 379.
[17] R.G. Pearson, J. Am. Chem. Soc. 85 (1963) 3533.
[18] J. Okuda, K.H. Zimmerman, Chem. Ber. 122 (1989) 1645.
[19] L. Jiang, Z. Shen, Y. Zhang, Eur. Polym. J. 36 (2000) 2513.
[20] D.H. Templeton, C.H. Danben, J. Am. Chem. Soc. 76 (1954) 5237.
[21] J. Sun, Chem. Res. Chin. Univ. 13 (1997) 344.
[22] H. Yasuda, H. Tamai, Prog. Polym. Sci. 18 (1993) 1097.
[23] J. Sun, Z. Pan, Y. Zhong, W. Hu, S. Yang, Eur. Polym. J. 36 (2000)
2375.
3.4. Polymerization of MMA
[24] Y. Qian, unpublished results.
Polymerization was carried out in a dry and sealed
ampoule tube with a rubber stopper. The required
amounts of reagents were introduced into the ampoule
by a syringe under a dry Ar atmosphere. After intro-
ducing the catalyst (and solvent when required), the
monomer MMA, usually 1 ml, is charged. The cocata-
lyst was then introduced to initiate the reaction. Poly-
merization was carried out at a constant temperature in
[25] J. Sun, G. Wang, Z. Shen, Chin. J. Appl. Chem. 10 (1993) 1.
[26] R.C. Ferguson, D.W. Ovenall, Polym. Prep. 26 (1985) 182.
[27] F.A. Bovey, G.V.D. Tiers, J. Polym. Sci. 44 (1960) 173.
[28] F.A. Bovey, J. Polym. Sci. 46 (1960) 59.
[29] H. Yasuda, H. Yamamoto, M. Yamashita, K. Yokota, A.
Nakamura, S. Miyake, Y. Kai, N. Kanehisa, Macromolecules 26
(1993) 7134.
[30] M.D. Taylor, C.P. Carter, J. Inorg. Nucl. Chem. 24 (1962) 387.
[31] H. Gilman, W.E. Catlin, Org. Synth. Coll. 1 (1944) 188.