Organic Letters
Letter
the coupling product to the stable C-β configuration and the following
lactonization might occur under reaction or quenching conditions.
(10) (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953. (b) Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450,
243.
(11) Mitsunobu, O.; Yamada, M.; Mukaiyama, T. Bull. Chem. Soc. Jpn.
1967, 40, 935.
(12) Nitz, M.; Bundle, D. R. J. Org. Chem. 2000, 65, 3064.
(13) Kimura, A.; Imamura, A.; Ando, H.; Ishida, H.; Kiso, M. Synlett
2006, 2379.
subsequent exposure of 35 to TiCl4 furnished paecilomycin B
(2) in 96% yield from 34, whose analytical data, including MS,
1H, and 13C NMR, were identical to the reported data.4,20
In summary, we have achieved the first total synthesis of
paecilomycin B (2) based on a functionalized aryl-β-C-
glycoside synthetic method using TIPPLi, which started from
p-methoxyphenyl β-D-glucopyranoside 20 and 1-bromo-3,5-
dimethoxybenzene (25). The macrocyclization step was
achieved via RCM in good yield and stereoselectivity. Thus,
our aryl-β-C-glycoside synthetic method9a is applicable to
natural product synthesis because of its good functional group
tolerance.
(14) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(15) (a) Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1982, 403.
(b) Selles, P.; Lett, R. Tetrahedron Lett. 2002, 43, 4621.
̀
(16) (a) Terauchi, M.; Abe, H.; Matsuda, A.; Shuto, S. Org. Lett.
2004, 6, 3751. (b) Deshpande, P. P.; Ellsworth, B. A.; Buono, F. G.;
Pullockaran, A.; Singh, J.; Kissick, T. P.; Huang, M.-H.; Lobinger, H.;
Denzel, T.; Mueller, R. H. J. Org. Chem. 2007, 72, 9746.
(17) Dondoni, A.; Marra, A. Tetrahedron Lett. 2003, 44, 13.
(18) (a) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem.
Soc. 1977, 99, 3179. (b) Jin, H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J.
Am. Chem. Soc. 1986, 108, 5644. (c) Takai, K.; Tagashira, M.; Kuroda,
T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108,
6048. (d) Hargaden, G. C.; Guiry, P. J. Adv. Synth. Catal. 2007, 349,
2407. (e) Liu, X.; Li, X.; Chen, Y.; Hu, Y.; Kishi, Y. J. Am. Chem. Soc.
2012, 134, 6136.
(19) (a) Jarosz, S. Carbohydr. Res. 1988, 183, 201. (b) Potopnyk, M.
A.; Cmoch, P.; Cieplak, M.; Gajewska, A.; Jarosz, S. Tetrahedron:
Asymmetry 2011, 22, 780.
(20) The specific rotation value of our synthetic paecilomycin B (2)
is [α]D25 +85.5 (c 0.32, MeOH) (lit.4a [α]2D4 +40.4 (c 0.27, MeOH)).
Judging from literature data of 1H and 13C NMR, the difference might
be on the basis of the small amount of contaminated impurity in
natural paecilomycin B (2).
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and spectral data for all new
compounds. The Supporting Information is available free of
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) Winssinger, N.; Fontaine, J.-G.; Barluenga, S. Curr. Top. Med.
Chem. 2009, 9, 1419.
(2) Hofmann, T.; Altmann, K.-H. C. R. Chim. 2008, 11, 1318.
(3) For reviews, see: (a) Winssinger, N.; Barluenga, S. Chem.
Commun. 2007, 22. (b) Xu, J.; Jiang, C.-S.; Zhang, Z.-L.; Ma, W.-Q.;
Guo, Y.-W. Acta Pharmacol. Sin. 2014, 35, 316. For synthetic studies
of RALs, see: (c) Kalivretenos, A.; Stille, J. K.; Hegedus, L. S. J. Org.
Chem. 1991, 56, 2883. (d) Yang, Z.-Q.; Geng, X.; Solit, D.; Pratilas, C.
A.; Rosen, N.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 7881.
(e) Chrovian, C. C.; Knapp-Reed, B.; Montgomery, J. Org. Lett. 2008,
10, 811. (f) Napolitano, C.; McArdle, P.; Murphy, P. V. J. Org. Chem.
2010, 75, 7404. (g) LeClair, C. A.; Boxer, M. B.; Thomas, C. J.;
Maloney, D. J. Tetrahedron Lett. 2010, 51, 6852. (h) Wang, L.; Gao, Y.;
Liu, J.; Cai, C.; Du, Y. Tetrahedron 2014, 70, 2616. (i) Bolte, B.;
Basutto, J. A.; Bryan, C. S.; Garson, M. J.; Banwell, M. G.; Ward, J. S. J.
Org. Chem. 2015, 80, 460.
(4) (a) Xu, L.; He, Z.; Xue, J.; Chen, X.; Wei, X. J. Nat. Prod. 2010,
73, 885. (b) Xu, L.; He, Z.; Xue, J.; Chen, X.; Wei, X. J. Nat. Prod.
2012, 75, 1006.
(5) Xu, L.; Xue, J.; Zou, Y.; He, S.; Wei, X. Chin. J. Chem. 2012, 30,
1273.
(6) (a) Xu, L.-X.; Wu, P.; Wei, H.-H.; Xue, J.-H.; Hu, X.-P.; Wei, X.-
Y. Tetrahedron Lett. 2013, 54, 2648. (b) Xu, L.-X.; Xue, J.-H.; Wu, P.;
You, X.-Y.; Wei, X.-Y. Chirality 2014, 26, 44.
(7) (a) Jana, N.; Nanda, S. Tetrahedron: Asymmetry 2012, 23, 802.
(b) Pal, P.; Jana, N.; Nanda, S. Org. Biomol. Chem. 2014, 12, 8257.
(8) Srihari, P.; Mahankali, B.; Rajendraprasad, K. Tetrahedron Lett.
2012, 53, 56.
(9) (a) Ohba, K.; Koga, Y.; Nomura, S.; Nakata, M. Tetrahedron Lett.
2015, 56, 1007. (b) In contrast to our previous observations9a of C-α
stereoselectivity in nucleophilic coupling reactions between perbenzy-
lated or persilylated δ-gluconolactone and methyl 2-halobenzoate
forming C-α spiroketals, C-β configurations of 17a and 17c were
detected. We presumed that this C-β stereoselectivity was derived from
the low reactivity of a methyl ester group on the electron-rich aromatic
ring toward generated alkoxide so that spontaneous lactonization at
low temperature might be disturbed, while prompt isomerization of
D
Org. Lett. XXXX, XXX, XXX−XXX