CHLORIDE ION OXIDATION
1435
mean pore diameter was 26 nm. The magnesium oxide
powder obtained under the same condition had a
smaller specific surface e area and a smaller pore volꢀ
4. V. P. Kochergin, M. K. Korshunova, M. S. Ulanova,
and Z. A. Shevrina, Zh. Neorg. Khim. 14, 521 (1969).
5
. Yu. S. Chekryshkin, A. N. Chudinov, T. A. Rozdyꢀ
alovskaya, and A. A. Fedorov, Russ. J. Appl. Chem. 83
(8), 1461 (2010).
2
–1
ume: its specific surface area was 10.85 m g , its pore
3
–1
volume was 0.02 cm g , and its mean pore diameter
was 7 nm.
6. K. Kopalko, M. Godlewski, J. Z. Domagala, et al.,
Chem. Mater. 16 (8), 1447 (2004).
The ionic structure of the metal chlorides and the
dependence of their oxidizability on the PP of the catꢀ
ion suggest that the reaction takes place via an ionic
mechanism. Coming into contact with a molten metal
chloride, dioxygen dissolves in it by occupying
7
. V. N. Gaprindashvili, L. V. Bagaturiya, Ts. G. Sulakadze,
and L. A. Tskalobadze, Izv. Akad. Nauk Gruzii, Ser.
Khim., Nos. 3–4, 332 (2004).
8. US Patent No. 6994636.
“
defects” of the ionic stricture of the melt. This gives
9
. K. Takefumi, S. Toshimitsu, I. Kazunori, et al., Ind.
Eng. Chem. Res. 42 (24), 6040 (2003).
rise to the following chemical reaction [21]:
O2(g) + 4Cl–
2–
10. Yu. S. Chekryshkin, T. A. Rozdyalovskaya, Z. R. Ismagiꢀ
lov, et al., Eurasian Chem. Technol. J. (2), 137 (2003).
→
2O + 2Cl .
2(g)
5
−
2−
1
1. T. A. Rozdyalovskaya, Yu. S. Chekryshkin, V. N. Nekrasov,
Oxygen in the melts can exist as O2 and O2 species
et al., Rasplavy, No. 4, 75 (2004).
[
24, 25]. It was demonstrated that the dissolution of
oxygen in chloride melts brings about three parallel 12. A. N. Chudinov, T. A. Rozdyalovskaya, Zh. A. Vnutskikh,
reactions and, under equilibrium conditions, the
et al., Khim. Tekhnol., No. 11, 524 (2007).
dominant oxygen compounds are superoxides and the 13. H. C. Yang, Y. J. Cho, H. C. Eun, and E. H. Kim,
minor ones are peroxides [26, 27].
Chem. Eng. Sci. 62 (18–20), 5137 (2007).
1
4. R. I. Kraidenko, Khim. Tekhnol., No. 1, 8 (2011).
Thus, the study of chloride ion oxidation in molten
Group II metal chlorides demonstrated that the chloꢀ
rine yield in the MCl –O system is linearly correlated
15. H. C. Eun, H. C. Yang, Y. Z. Cho, et al., J. Hazard.
Mater. 160 (2–3), 634 (2008).
2
2
with the PP of the cation and with the square root of
its ionization potential. The observed dependence of
chloride oxidation on the PP of the cation can be used
in kinetic studies and thermodynamic analysis, as well
as in the estimation of the reactivity of chlorides and
oxides in their chlorination. The mural effect of catꢀ
ions should be taken into account in the oxidation of
metal chloride mixtures for obtaining metals and their
oxides.
1
1
1
6. N. Fu, I. Iwasaki, T. Tamagawa, and M. Kobayashi,
Chin. J. Process Eng. 9 (6), 1080 (2009).
7. D. M. Smith, M. P. Neu, E. Garcia, and V. R. Dole,
J. Alloys Compd. 319 (1–2), 258 (2001).
8. T. A. Rozdyalovskaya, Yu. S. Chekryshkin, A. N. Chuꢀ
dinov, and A. A. Fedorov, Russ. J. Appl. Chem. 82 (9),
1510 (2009).
19. Properties of Inorganic Compounds: A Handbook, Ed. by
A. I. Efimova (Khimiya, Leningrad, 1983) [in Russian].
2
0. N. A. Shabanova, V. V. Popov, and P. D. Sarkisov, Nanoꢀ
disperse Oxide Chemistry and Technology (Akaꢀ
demkniga, Moscow, 2007) [in Russian].
ACKNOWLEDGMENTS
This study was supported by the Russian Foundaꢀ
tion for Basic Research (project 10ꢀ03ꢀ00187a) and by
the Presidium of the Russian Academy of sciences
2
2
2
2
2
2
1. M.V. Smirnov, Electrode Potentials in Molten Chlorides
(Nauka, Moscow, 1973) [in Russian].
2. L. T. Bugaenko, S. M. Ryabykh, and A. L. Bugaenko,
(
program no. 18: “Synthesis and Isolation of Nanoꢀ
Vestn. Mosk. Univ., Ser. 2: Khim. 49 (6), 363 (2008).
sized Powders of Metal Oxides in Chloride Melts”).
3. S. J. Shaw and G. S. Perry, Thermochim. Acta 157 (2),
329 (1990).
REFERENCES
4. M. L. Deanhardt and V. H. Starn, J. Electrochem. Soc.
27 (12), 2600 (1980).
1
1
2
3
. M. Trypuc
Chem. Res. 40 (3), 731 (2001).
’, K. Bia lowicz, and K. Mazurek, Ind. Eng.
5. F. L. Whitting, G. Mamantov, and I. P. Young, J. Inorg.
Nucl. Chem. 34 (8), 2475 (1972).
. M. Trypuc’, Z. Torski, and U. Kie lkowska, Ind. Eng.
6. M. V. Smirnov and O. Yu. Tkacheva, Rasplavy, No. 3,
Chem. Res. 40 (4), 1022 (2001).
5
7 (1991).
owicz, and K. Mazurek, Chem. 27. M. V. Smirnov and O. Yu. Tkacheva, Rasplavy, No. 3,
Eng. Sci. 59 (6), 1241 (2004). 66 (1991).
. M. Trypuc, K. Bia
l
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY Vol. 57 No. 11 2012