Inorganic Chemistry
Article
(21) Broux, T.; Ubukata, H.; Pickard, C. J.; Takeiri, F.; Kobayashi,
G.; Kawaguchi, S.; Yonemura, M.; Goto, Y.; Tassel, C.; Kageyama, H.
High-Pressure Polymorphs of LaHO with Anion Coordination
Reversal. J. Am. Chem. Soc. 2019, 141, 8717−8720.
REFERENCES
■
(1) Waldie, K. M.; Brunner, F. M.; Kubiak, C. P. Transition Metal
Hydride Catalysts for Sustainable Interconversion of CO2 and
Formate: Thermodynamic and Mechanistic Considerations. ACS
Sustainable Chem. Eng. 2018, 6, 6841−6848.
(2) Yamashita, H.; Broux, T.; Kobayashi, Y.; Takeiri, F.; Ubukata,
H.; Zhu, T.; Hayward, M. A.; Fujii, K.; Yashima, M.; Shitara, K.;
Kuwabara, A.; Murakami, T.; Kageyama, H. Chemical Pressure-
Induced Anion Order-Disorder Transition in LnHO Enabled by
Hydride Size Flexibility. J. Am. Chem. Soc. 2018, 140, 11170−11173.
(3) Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion
batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.
(4) Unemoto, A.; Matsuo, M.; Orimo, S.-i. Complex Hydrides for
Electrochemical Energy Storage. Adv. Funct. Mater. 2014, 24, 2267−
2279.
(5) Verbraeken, M. C.; Cheung, C.; Suard, E.; Irvine, J. T. S. High
H− conductivity in barium hydride. Nat. Mater. 2015, 14, 95−100.
(6) Kunkel, N.; Wylezich, T. Recent Advances in Rare Earth-Doped
Hydrides. Z. Anorg. Allg. Chem. 2019, 645, 137−145.
(7) Kobayashi, G.; Hinuma, Y.; Matsuoka, S.; Watanabe, A.; Iqbal,
M.; Hirayama, M.; Yonemura, M.; Kamiyama, T.; Tanaka, I.; Kanno,
R. Pure H− conduction in oxyhydrides. Science 2016, 351, 1314−
1317.
(8) Kageyama, H.; Hayashi, K.; Maeda, K.; Attfield, J. P.; Hiroi, Z.;
Rondinelli, J. M.; Poeppelmeier, K. R. Expanding frontiers in materials
chemistry and physics with multiple anions. Nat. Commun. 2018, 9,
1−15.
(9) Bridges, C. A.; Darling, G. R.; Hayward, M. A.; Rosseinsky, M. J.
Electronic Structure, Magnetic Ordering, and Formation Pathway of
the Transition Metal Oxide Hydride LaSrCoO3H0.7. J. Am. Chem. Soc.
2005, 127, 5996−6011.
(10) Denis Romero, F.; Leach, A.; Moller, J. S.; Foronda, F.;
Blundell, S. J.; Hayward, M. A. Strontium Vanadium Oxide-Hydrides:
″Square-Planar″ Two-Electron phases. Angew. Chem., Int. Ed. 2014,
53, 7556−7559.
(11) Helps, R. M.; Rees, N. H.; Hayward, M. A. Sr3Co2O4.33H0.84
An Extended Transition Metal Oxide-Hydride. Inorg. Chem. 2010, 49,
11062−11068.
(22) Widerøe, M.; Fjellvåg, H.; Norby, T.; Willy Poulsen, F.;
Willestofte Berg, R. NdHO, a novel oxyhydride. J. Solid State Chem.
2011, 184, 1890−1894.
(23) Ronda, C. R. Phosphors for lamps and displays: an applicational
view. J. Alloys Compd. 1995, 225, 534−538.
́
(24) Kunkel, N.; Ferrier, A.; Thiel, C. W.; Ramírez, M. O.; Bausa, L.
E.; Cone, R. L.; Ikesue, A.; Goldner, P. Rare-earth doped transparent
ceramics for spectral filtering and quantum information processing.
APL Mater. 2015, 3, 096103.
(25) Kunkel, N.; Bartholomew, J.; Welinski, S.; Ferrier, A.; Ikesue,
A.; Goldner, P. Dephasing mechanism of optical transitions in rare-
earth-doped transparent ceramics. Phys. Rev. B: Condens. Matter
Mater. Phys. 2016, 94, 184301.
(26) Kohlmann, H.; Hein, C.; Kautenburger, R.; Hansen, T. C.;
Ritter, C.; Doyle, S. Crystal structure of monoclinic samarium and
cubic europium sesquioxides and bound coherent neutron scattering
lengths of the isotopes 154Sm and 153Eu. Z. Kristallogr. 2016, 231,
517−523.
(27) Dutton, S. E.; Hirai, D.; Cava, R. J. Low temperature synthesis
of LnOF rare-earth oxyfluorides through reaction of the oxides with
PTFE. Mater. Res. Bull. 2012, 47, 714−718.
(28) Franz, A.; Hoser, A. E9: The Fine Resolution Powder
Diffractometer (FIREPOD) at BER II. Journal of large-scale research
facilities 2017, 3, A103.
(29) Bindzus, N.; Straasø, T.; Wahlberg, N.; Becker, J.; Bjerg, L.;
Lock, N.; Dippel, A.-C.; Iversen, B. B. Experimental determination of
core electron deformation in diamond. Acta Crystallogr., Sect. A:
Found. Adv. 2014, 70, 39−48.
̈
(30) Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy
calculations for metals and semiconductors using a plance-wave basis
set. Comput. Mater. Sci. 1996, 6, 15−50.
(31) Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab
̈
:
initio total-energy calculations using a plane-wave basis set. Phys. Rev.
B: Condens. Matter Mater. Phys. 1996, 54, 11169−11186.
̈
(32) Blochl, P. E. Projector augmented-wave method. Phys. Rev. B:
(12) Kobayashi, Y.; Tang, Y.; Kageyama, T.; Yamashita, H.; Masuda,
N.; Hosokawa, S.; Kageyama, H. Titanium-Based Hydrides as
Heterogeneous Catalysts for Ammonia Synthesis. J. Am. Chem. Soc.
2017, 139, 18240−18246.
Condens. Matter Mater. Phys. 1994, 50, 17953−17979.
(33) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
̈
(34) Blochl, P. E.; Jepsen, O.; Andersen, O. K. Improved
(13) Carter, F. L.; Nachman, J. F. Certain Mixed Hydride-
Chalcogenide Rare-Earth Compounds. Proceedings of the Second
Conference on Rare Earth Research 1961, 2, 311−320.
(14) Brice, J. F.; Moreau, A. Synthese et cunductivite anionique des
hydruro-oxydes de lanthane de formule LaHO, LaH1+2xO1‑x et
LaH1+yO1‑x (y < 2x). Ann. Chim. Fr. 1982, 7, 623−634.
(15) Tellefsen, M.; Kaldis, E.; Jilek, E. The Phase-Diagram of the Ce-
H2 System and the CeH2-CeH3 Solid Solutions. J. Less-Common Met.
1985, 110, 107−117.
(16) Ueda, J.; Matsuishi, S.; Tokunaga, T.; Tanabe, S. Preparation,
electronic structure of gadolinium oxyhydride and low-energy 5d
excitation band for green luminescence of doped Tb3+ ions. J. Mater.
Chem. C 2018, 6, 7541−7548.
tetrahedron method for Brillouin-zone integrations. Phys. Rev. B:
Condens. Matter Mater. Phys. 1994, 49, 16223−16233.
(35) Khatamian, D.; Manchester, F. D. The H-Y (Hydrogen-
Yttrium) System. Bull. Alloy Phase Diagrams 1988, 9, 252−260.
(36) Sears, V. F. Neutron scattering lengths and cross sections.
Neutron News 1992, 3, 26−37.
(37) Yamane, H.; Okabe, T. H.; Ishiyama, O.; Waseda, Y.; Shimada,
M. Ternary Nitrides prepared in the Li3N-Mg3N2 system at 900−
1000 K. J. Alloys Compd. 2001, 319, 124−130.
(38) Meyer, A. Symmetriebeziehungen zwischen Kristallstrukturen
des Formeltyps AX2, ABX4, AB2X6 sowie deren Ordnungs- und
Leerstellenvarianten. Ph.D. Thesis, University Karlsruhe, Karlsruhe,
1981.
(17) Zapp, N.; Kohlmann, H. The lanthanide hydride oxides SmHO
and HoHO. Z. Naturforsch., B: J. Chem. Sci. 2018, 73, 535−538.
(18) Montero, J.; Martinsen, F. A.; García-Tecedor, M.; Karazhanov,
S. Zh.; Maestre, D.; Hauback, B.; Marstein, E. S. Photochromic
mechanism in oxygen-containing yttrium hydride thin films: An
optical perspective. Phys. Rev. B: Condens. Matter Mater. Phys. 2017,
95, 201301.
(19) Pishtshev, A.; Strugovshchikov, E.; Karazhanov, S. Conceptual
Design of Yttrium Oxyhydrides: Phase Diagram, Structure, and
Properties. Cryst. Growth Des. 2019, 19, 2574−2582.
(20) Malaman, B.; Brice, J. F. Etude structurale de l’hydruro-oxyde
LaHO par diffraction des rayons X et par diffraction de neutrons. J.
Solid State Chem. 1984, 53, 44−54.
(39) Udovic, T. J.; Huang, Q.; Santoro, A.; Rush, J. J. The nature of
deuterium arrangements in YD3 and other rare-earth trideuterides. Z.
Kristallogr. 2008, 223, 697−705.
(40) Coduri, M.; Scavini, M.; Allieta, M.; Brunelli, M.; Ferrero, C.
Defect Structure of Y-Doped Ceria on Different Length Scales. Chem.
Mater. 2013, 25, 4278−4289.
(41) Christensen, A. N.; von Heidenstamm, O. Neutron Diffraction
Study of YOOD. Acta Chem. Scand. 1966, 20, 2658−2662.
(42) Shannon, R. D. Revised Effective Ionic Radii and Systematic
Studies of Interatomic Distances in Halides and Chalcogenides. Acta
Crystallogr. 1976, 32, 751−767.
(43) Pauling, L. The Principles Determining the Structure of
Complex Ionic Crystals. J. Am. Chem. Soc. 1929, 51, 1010−1026.
F
Inorg. Chem. XXXX, XXX, XXX−XXX