Page 11 of 12
ACS Catalysis
Molecular Catalyst Screening. Phys. Chem. Chem. Phys. 2014, 16,
5739-5746.
Containing a Bridging Hexaphosphine Ligand: Evidence for
Cooperativity. Organometallics 1995, 14, 4937-4943.
1
2
3
4
5
6
7
8
15. Kilgore, U. J.; Stewart, M. P.; Helm, M. L.; Dougherty, W. G.;
30. Pegis, M. L.; Wise, C. F.; Koronkiewicz, B.; Mayer, J. M.
Identifying and Breaking Scaling Relations in Molecular Catalysis
of Electrochemical Reactions. J. Am. Chem. Soc. 2017, 139, 11000-
11003.
31. Kilgore, U. J.; Roberts, J. A. S.; Pool, D. H.; Appel, A. M.;
Stewart, M. P.; Rakowski DuBois, M.; Dougherty, W. G.; Kassel,
W. S.; Bullock, R. M.; DuBois, D. L. [Ni(PPh2NC6H4X2)2]2+ Complexes
as Electrocatalysts for H2 Production: Effect of Substituents,
Acids, and Water on Catalytic Rates. J. Am. Chem. Soc. 2011, 133,
5861-5872.
Kassel, W. S.; Rakowski DuBois, M.; DuBois, D. L.; Bullock, R. M.
Studies of a Series of [Ni(PR NPh2)2(CH3CN)]2+ Complexes as
2
Electrocatalysts for H2 Production: Substituent Variation at the
Phosphorus Atom of the P2N2 Ligand. Inorg. Chem. 2011, 50,
10908-10918.
16. Huo, P.; Uyeda, C.; Goodpaster, J. D.; Peters, J. C.; Miller, T.
F. Breaking the Correlation between Energy Costs and Kinetic
Barriers in Hydrogen Evolution via a Cobalt Pyridine-Diimine-
Dioxime Catalyst. ACS Catal. 2016, 6, 6114-6123.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
17. DuBois, D. L. Development of Molecular Electrocatalysts for
Energy Storage. Inorg. Chem. 2014, 53, 3921-4268.
18. Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M.
Through-Space Charge Interaction Substituent Effects in
Molecular Catalysis Leading to the Design of the Most Efficient
Catalyst of CO2-to-CO Electrochemical Conversion. J. Am. Chem.
Soc. 2016, 138, 16639-16644.
32. Wiedner, E. S.; Brown, H. J. S.; Helm, M. L. Kinetic Analysis
of Competitive Electrocatalytic Pathways: New Insights into
Hydrogen Production with Nickel Electrocatalysts. J. Am. Chem.
Soc. 2016, 138, 604-616.
33. Ho, M.-H.; Rousseau, R.; Roberts, J. A. S.; Wiedner, E. S.;
Dupuis, M.; DuBois, D. L.; Bullock, R. M.; Raugei, S. Ab Initio-
Based Kinetic Modeling for the Design of Molecular Catalysts: The
Case of H2 Production Electrocatalysts. ACS Catal. 2015, 5, 5436-
5452.
34. Rountree, E. S.; Dempsey, J. L. Potential-Dependent
Electrocatalytic Pathways: Controlling Reactivity with pKa for
Mechanistic Investigation of a Nickel-Based Hydrogen Evolution
Catalyst. J. Am. Chem. Soc. 2015, 137, 13371-13380.
35. Cardenas, A. J. P.; Ginovska, B.; Kumar, N.; Hou, J.; Raugei,
S.; Helm, M. L.; Appel, A. M.; Bullock, R. M.; O'Hagan, M.
Controlling Proton Delivery through Catalyst Structural
Dynamics. Angew. Chem., Int. Ed. 2016, 55, 13509-13513.
36. Wilson, A. D.; Newell, R. H.; McNevin, M. J.; Muckerman, J.
T.; Rakowski DuBois, M.; DuBois, D. L. Hydrogen Oxidation and
Production Using Nickel-Based Molecular Catalysts with
Positioned Proton Relays. J. Am. Chem. Soc. 2006, 128, 358-366.
37. Ballester, J.; Gatignol, J.; Schmidt, G.; Alayrac, C.; Gaumont,
A.-C.; Taillefer, M. A Copper-Catalyzed Variant of the Michaelis–
Arbuzov Reaction. ChemCatChem 2014, 6, 1549-1552.
38. Ochida, A.; Hamasaka, G.; Yamauchi, Y.; Kawamorita, S.;
Oshima, N.; Hara, K.; Ohmiya, H.; Sawamura, M. Synthesis,
Properties, and Catalytic Applications of Caged, Compact
19. Bernatis, P. R.; Miedaner, A.; Haltiwanger, R. C.; DuBois, D.
L. Exclusion of Six-Coordinate Intermediates in the
Electrochemical
Reduction
of
CO2
Catalyzed
by
[Pd(triphosphine)(CH3CN)](BF4)2 Complexes. Organometallics
1994, 13, 4835-4843.
20. Pegis, M. L.; McKeown, B. A.; Kumar, N.; Lang, K.;
Wasylenko, D. J.; Zhang, X. P.; Raugei, S.; Mayer, J. M.
Homogenous Electrocatalytic Oxygen Reduction Rates Correlate
with Reaction Overpotential in Acidic Organic Solutions. ACS
Cent. Sci. 2016, 2, 850-856.
21. Wang, Y.-H.; Pegis, M. L.; Mayer, J. M.; Stahl, S. S. Molecular
Cobalt Catalysts for O2 Reduction: Low-Overpotential Production
of H2O2 and Comparison with Iron-Based Catalysts. J. Am. Chem.
Soc. 2017, 139, 16458-16461.
22. Berning, D. E.; Miedaner, A.; Curtis, C. J.; Noll, B. C.;
Rakowski DuBois, M.; DuBois, D. L. Free-Energy Relationships
Between the Proton and Hydride Donor Abilities of
[HNi(diphosphine)2]+ Complexes and the Half-Wave Potentials of
Their Conjugate Bases. Organometallics 2001, 20, 1832-1839.
23. Chen, S.; Raugei, S.; Rousseau, R.; Dupuis, M.; Bullock, R.
M. Homogeneous Ni Catalysts for H2 Oxidation and Production:
An Assessment of Theoretical Methods, from Density Functional
Theory to Post Hartree−Fock Correlated Wave-Function Theory.
J. Phys. Chem. A 2010, 114, 12716-12724.
24. Chen, S.; Ho, M.-H.; Bullock, R. M.; DuBois, D. L.; Dupuis,
M.; Rousseau, R.; Raugei, S. Computing Free Energy Landscapes:
Application to Ni-based Electrocatalysts with Pendant Amines for
H2 Production and Oxidation. ACS Catal. 2013, 4, 229-242.
25. Solis, B. H.; Hammes-Schiffer, S. Substituent Effects on
Cobalt Diglyoxime Catalysts for Hydrogen Evolution. J. Am.
Chem. Soc. 2011, 133, 19036-19039.
26. Schneider, J.; Jia, H. F.; Muckerman, J. T.; Fujita, E.
Thermodynamics and Kinetics of CO2, CO, and H+ Binding to the
Metal Centre of CO2 Reduction Catalysts. Chem. Soc. Rev. 2012, 41,
2036-2051.
27. Shaw, W. J.; Helm, M. L.; DuBois, D. L. A Modular, Energy-
Based Approach to the Development of Nickel Containing
Molecular Electrocatalysts for Hydrogen Production and
Oxidation. Biochim. Biophys. Acta, Bioenerg. 2013, 1827, 1123-1139.
28. Chapovetsky, A.; Do, T. H.; Haiges, R.; Takase, M. K.;
Marinescu, S. C. Proton-Assisted Reduction of CO2 by Cobalt
Aminopyridine Macrocycles. J. Am. Chem. Soc. 2016, 138, 5765-
5768.
Trialkylphosphine
4-Phenyl-1-phospha-4-
silabicyclo[2.2.2]octane. Organometallics 2008, 27, 5494-5503.
39. Franz, J. A.; O’Hagan, M.; Ho, M.-H.; Liu, T.; Helm, M. L.;
Lense, S.; DuBois, D. L.; Shaw, W. J.; Appel, A. M.; Raugei, S.;
Bullock, R. M. Conformational Dynamics and Proton Relay
Positioning in Nickel Catalysts for Hydrogen Production and
Oxidation. Organometallics 2013, 32, 7034-7042.
40. Barry, J. T.; Berg, D. J.; Tyler, D. R. Radical Cage Effects: The
Prediction of Radical Cage Pair Recombination Efficiencies Using
Microviscosity Across a Range of Solvent Types. J. Am. Chem. Soc.
2017, 139, 14399-14405.
41. Barry, J. T.; Berg, D. J.; Tyler, D. R. Radical Cage Effects:
Comparison of Solvent Bulk Viscosity and Microviscosity in
Predicting the Recombination Efficiencies of Radical Cage Pairs.
J. Am. Chem. Soc. 2016, 138, 9389-9392.
42. Ho, M.-H.; O'Hagan, M.; Dupuis, M.; DuBois, D. L.; Bullock,
R. M.; Shaw, W. J.; Raugei, S. Water-Assisted Proton Delivery and
Removal in Bio-inspired Hydrogen Production Catalysts. Dalton
Trans. 2015, 44, 10969-10979.
43. O’Hagan, M.; Shaw, W. J.; Raugei, S.; Chen, S.; Yang, J. Y.;
Kilgore, U. J.; DuBois, D. L.; Bullock, R. M. Moving Protons with
Pendant Amines: Proton Mobility in a Nickel Catalyst for
Oxidation of Hydrogen. J. Am. Chem. Soc. 2011, 133, 14301-14312.
44. Savéant, J. M.; Vianello, E. Potential-Sweep
Chronoamperometry: Kinetic Currents for First-Order Chemical
29. Steffey, B. D.; Curtis, C. J.; DuBois, D. L. Electrochemical
Reduction of CO2 Catalyzed by a Dinuclear Palladium Complex
11
ACS Paragon Plus Environment