GURUMOORTHY ET AL.
11 of 12
[6] R. Singh, N. K. Kaushik, Spectrochim. Acta Mol. Biomol.
Spectrosc. 2008, 71, 669.
rhodamine‐B, respectively, under UV light irradiation in
180 min. The degradation efficiency of copper–iron
sulfide is greater than that of copper sulfide for the inves-
tigated dyes. The presence of iron in copper–iron sulfide‐
1 can also enhance the photocatalytic degradation activity
due to smaller crystal size, higher efficiency for electron–
hole regeneration and charge trapping.
[7] A. M. Bond, R. L. Martin, Coord. Chem. Rev. 1984, 54, 23.
[8] A. R. Hendrickson, R. L. Martin, N. M. Rohde, Inorg. Chem.
1976, 15, 2115.
[9] J. Cookson, P. D. Beer, Dalton Trans. 2007, 1459.
[10] G. Gurumoorthy, S. Thirumaran, Phosphorus, Sulfur Silicon
Relat. Elem. 2017, 192, 330.
8 | CONCLUSIONS
[11] P. Li, K.‐Y. Qui, J. Polym Sci, Polym. Chem. 2002, 40, 2093.
[12] P. Li, K.‐Y. Qui, Macromolecules 2002, 35, 8906.
Complexes 1–4 containing pyrrole and ferrocene moieties
were prepared and characterized. The copper centre in 3
has distorted square planar four‐coordinate environ-
ments. The chemical potential of 3 calculated using
DFT is negative (−3.4583 eV). This indicates that the
complex is stable. Anion binding studies show that com-
plex 1 prefers to bind with F−. This study demonstrates
that spherical copper sulfide and copper–iron sulfide
nanoparticles and oval‐shaped copper–iron sulfide nano-
particles can be prepared from the copper dithiocarbamate
complexes. Copper–iron sulfide (bimetallic) nanoparticles
revealed better photocatalytic activity for the
photodegradation of methylene blue and rhodamine‐B
under UV light compared to copper sulfide (monometal-
lic). This study indicates that the new copper(II) dithiocar-
bamate complexes containing various N‐bound organic
moieties are useful for sensing anions and for preparing
effective photocatalysts (copper sulfide and copper–iron
sulfide nanoparticles with various shapes).
[13] V. Singh, R. Chauhan, A. N. Gupta, V. Kumar, M. G. B. Drew,
L. Bahadur, N. Singh, Dalton Trans. 2014, 43, 4752.
[14] P. D. Beer, N. Berry, M. G. B. Drew, O. D. Fox, M. E. Padilla‐
Tosta, S. Patell, Chem. Commun. 2001, 199.
[15] R. Nomura, K. Miyakawa, T. Toyosaki, H. Matsuda, Chem.
Vap. Deposition 1996, 2, 174.
[16] M. Kemmler, M. Lazell, P. O'Brien, D. J. Otway, J.‐H. Park, J.
R. Walsh, J. Mater. Sci. Mater. Electron 2002, 13, 531.
[17] P. O'Brien, J. R. Walsh, I. M. Watson, L. Hart, S. R. P. Silva,
J. Cryst. Growth 1996, 167, 133.
[18] M. R. Lazell, P. O'Brien, D. J. Otway, J.‐H. Park, Chem. Mater.
1999, 11, 3430.
[19] A. L. Abdelhady, K. Ramasamy, M. A. Malik, P. O'Brien, S. J.
Haigh, J. Raftery, J. Mater. Chem 2011, 21, 17888.
[20] T. Okubo, R. Kawajiri, T. Mitani, T. Shimoda, J. Am. Chem.
Soc. 2005, 127, 17598.
[21] R. H. Bube, W. H. McCarroll, J. Phys. Chem. Solids 1959, 10,
333.
[22] D. V. Konarev, A. Y. Kovalevsky, D. V. Lopatin, A. V.
Umrikhin, E. I. Yudanova, P. Coppens, R. N. Lyubovskaya, G.
Saito, Dalton Trans. 2005, 1821.
ACKNOWLEDGEMENTS
S.T. is grateful to the University Grants Commission
(UGC), India (no. 42‐341/2013 (SR)) for providing funding
for this research study. We are grateful to SAIF, Panjab
University, Chandigarh, India, for recording TEM images.
[23] V. F. Plyusnin, A. V. Kolomeets, V. P. Grivin, S. V. Larionov, H.
Lemmetyinen, J. Phys. Chem. A 2011, 115, 1763.
[24] G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.
[25] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N.
Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V.
Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J.
Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels,
M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,
S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al‐Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe,
P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez,
J. A. Pople, Gaussian 03, Revision B.03, Gaussian Inc., Pittsburgh,
PA 2003.
ORCID
Subbiah Thirumaran
REFERENCES
[1] P. J, Prog. Inorg. Chem. 2005, 53, 1.
[2] G. Hogarth, Prog. Inorg. Chem. 2005, 53, 71.
[3] F. H. Allen, Acta Crystallogr B 2002, 58, 71.
[4] F. Shaheen, A. Badshah, M. Gielen, C. Gieck, M. Jamil, D. de
Vos, J. Organometal. Chem. 2008, 693, 1117.
[5] V. Alverdi, L. Giovagnini, C. Marzano, R. Seraglia, F. Bettio, S.
Sitran, R. Graziani, D. Fregona, J. Inorg. Biochem. 2004, 98, 1117.