Mo-Ka (l = 0.71073 A) Dc = 1.133 g cmꢀ3, m(Mo) = 0.063 mmꢀ1
15 549 reflections measured, of which 8656 independent (Rint =
,
0.0738), Rf = 0.1044 [4180 data, I 4 2s(I)], wR(F2) = 0.3389,
GOF = 1.056.
y For structural features related to other dispirofluorene-indeno-
fluorenes with interacting face-to-face fluorene units, see ref. 13–15.
1 A. C. Grimsdale and K. Mullen, Macromol. Rapid Commun., 2007,
¨
28, 1676–1702.
2 Z. Ma, P. Sonar and Z.-K. Chen, Curr. Org. Chem., 2010, 18,
2039–2069.
Fig. 4 AC-AFM images of a vacuum-deposited thin-film of 1 (5 ꢂ 5 mm):
non-heated film (a). Film heated (1 h) in air at 130 1C (b) and 160 1C (c).
3 A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz and
A. B. Holmes, Chem. Rev., 2009, 109, 897–1091.
4 J. Jacob, J. Zhang, A. C. Grimsdale, K. Mullen, M. Gaal and E. J. W.
¨
List, Macromolecules, 2003, 36, 8240–8245.
phosphorescent peak were thus, respectively, estimated at ca.
2.76 eV and 2.52 eV. The meta-substituted terphenyl backbone
found in 1 leads hence to a remarkable increase of the ET value
compared to the para-substituted terphenyl backbone found in 2.
Thus, the ET value of 2 appears to be higher than the ET value of
Ir(ppy)3 (ET = 2.42 eV),16 an efficient green phosphorescent
emitter, and the ET value of 1 appears to be higher than the ET
value of FIrpic (ET = 2.64 eV),16 an efficient blue phosphore-
scent emitter.
5 D. Marsitzky, J. C. Scott, J.-P. Chen, V. Y. Lee, R. D. Miller,
S. Setayesh and K. Mullen, Adv. Mater., 2001, 13, 1096–1099.
¨
6 (a) N. Cocherel, C. Poriel, L. Vignau, J.-F. Bergamini and J. Rault-
Berthelot, Org. Lett., 2010, 12, 452–455; (b) D. Thirion, J. Rault-
Berthelot, L. Vignau and C. Poriel, Org. Lett., 2011, 13,
4418–4421.
7 Y. Park, J.-H. Lee, D. H. Jung, S.-H. Liu, Y.-H. Lin, L.-Y. Chen,
C.-C. Wu and J. Park, J. Mater. Chem., 2010, 20, 5930–5936.
8 W. Zhang, J. Smith, R. Hamilton, M. Heeney, J. Kirkpatrick,
K. Song, S. E. Watkins, T. Anthopoulos and I. McCulloch, J. Am.
Chem. Soc., 2009, 131, 10814–10815.
9 H. Usta, C. Risko, Z. Wang, H. Huang, M. K. Deliomeroglu,
A. Zhukhovitskiy, A. Facchetti and T. J. Marks, J. Am. Chem.
Soc., 2009, 131, 5586–5608.
10 J. Kim, S. H. Kim, I. H. Jung, E. Jeong, Y. Xia, S. Cho,
I.-W. Hwang, K. Lee, H. Suh, H.-K. Shim and H. Y. Woo,
J. Mater. Chem., 2010, 20, 1577–1586.
Finally, the morphology of vacuum deposited thin-films of 1
on quartz slides has been studied by atomic force microscopy
in acoustic mode (AC-AFM) in order to evaluate the effect of
temperature and ambient atmosphere on the thin-film structure.
The surface has been exposed to air under thermal stress
conditions from room temperature to 200 1C (Fig. 4 and
figures in ESIw). The non-heated film surface presents a regular
and smooth morphology (Fig. 4a). The surface roughness (Ra)
of the film appears to be very low, around 0.7 nm, and is kept
almost unchanged until 130 1C (Fig. 4b), highlighting the very
good quality of the film surface and the high stability of 1
upon heating. At 160 1C, the surface morphology became
however rough with Ra estimated around 18 nm, likely caused
by degradation and/or crystallization of the material
(Fig. 4c).30–32 1 presents hence an excellent morphological
stability under very harsh conditions and this stability up to
130 1C under an ambient atmosphere is a key point before any
possible OLED applications. Thermogravimetric analysis
(see ESIw) confirms the excellent thermal stability of 1 with a
decomposition temperature21 Td of 387 1C, even higher than
that of its isomer 2 (Td = 350 1C).26
11 L.-C. Chi, W.-Y. Hung, H.-C. Chiu and K.-T. Wong, Chem.
Commun., 2009, 3892–3894.
12 Covion Organic Semiconductors: Eur. Pat. Appl., EP 1491568,
2004.
13 D. Thirion, C. Poriel, J. Rault-Berthelot, F. Barrie
O. Jeannin, Chem.–Eur. J., 2010, 16, 13646–13658.
14 D. Thirion, C. Poriel, F. Barriere, O. Jeannin, R. Me
J. Rault-Berthelot, Org. Lett., 2009, 11, 4794–4797.
15 D. Thirion, C. Poriel, R. Metivier, J. Rault-Berthelot, F. Barrie
and O. Jeannin, Chem.–Eur. J., 2011, 17, 10272–10287.
´
re and
´
´
tivier and
´
´
re
16 H. Yersin, Highly Efficient OLEDs with Phosphorescent Materials,
Wiley-VCH: Verlag GMbH & Co. KGaA, Weinheim, 2007.
17 L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong and J. Kido,
Adv. Mater., 2011, 23, 926–952.
18 Y. Tao, C. Yang and J. Qin, Chem. Soc. Rev., 2011, 40, 2943–2970.
19 C. Fan, Y. Chen, P. Gan, C. Yang, C. Zhong, J. Qin and D. Ma,
Org. Lett., 2010, 12, 5648–5651.
20 S. Ye, Y. Liu, C.-a. Di, H. Xi, W. Wu, Y. Wen, K. Lu, C. Du,
Y. Liu and G. Yu, Chem. Mater., 2009, 21, 1333–1342.
21 T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker and
J. Salbeck, Chem. Rev., 2007, 107, 1011–1065.
To summarize, we have designed and synthesized through
an efficient synthetic approach (2,1-b)-DSF(t-Bu)4-IF
1
containing the novel (2,1-b)-indenofluorenyl spirolinked to
two fluorenyl units. This simple molecular concept allows us
to combine within a single pure hydrocarbon molecule a high
ET with a very long phosphorescence lifetime and excellent
thermal and morphological stability. This work is the first
example of a (2,1-b)-indenofluorenyl core and one of the
highest ET ever reported for a morphologically stable pure
hydrocarbon derivative of interest for organic electronics.
We wish to thank the CDIFX, the C.R.M.P.O (Rennes) and
the CINES (Montpellier). We also thank A. Brosseau
(Cachan), Dr J. F. Bergamini (Rennes) for AFM images,
22 Z. Jiang, H. Yao, Z. Zhang, C. Yang, Z. Liu, Y. Tao, J. Qin and
D. Ma, Org. Lett., 2009, 11, 2607–2610.
23 P. Marsal, I. Avilov, D. A. da Silva Filho, J. L. Bredas and
D. Beljonne, Chem. Phys. Lett., 2004, 392, 521–528.
24 H. Sasabe, Y.-J. Pu, K.-I. Nakayama and J. Kido, Chem. Com-
mun., 2009, 6655–6657.
25 K. L. Chan, M. J. McKiernan, C. R. Towns and A. B. Holmes,
J. Am. Chem. Soc., 2005, 127, 7662–7663.
26 C. Poriel, J. Rault-Berthelot, F. Barriere and A. M. Z. Slawin, Org.
´
Lett., 2008, 10, 373–376.
27 D. Horhant, J.-J. Liang, M. Virboul, C. Poriel, G. Alcaraz and
J. Rault-Berthelot, Org. Lett., 2006, 8, 257–260.
28 A. P. Kulkarni, C. J. Tonzola, A. Babel and S. A. Jenekhe, Chem.
Mater., 2004, 16, 4556–4573.
F. Moreau (Rennes) for the TGA and the Region Bretagne
´
29 D. Hertel, S. Setayesh, H. G. Nothofer, U. Scherf, K. Mullen and
H. Bassler, Adv. Mater., 2001, 13, 65–70.
30 S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li and Y. Ma,
J. Mater. Chem., 2008, 18, 4802–4807.
31 S.-K. Kim, Y.-I. Park, I.-N. Kang and J.-W. Park, J. Mater.
Chem., 2007, 17, 4670–4678.
32 C.-H. Wu, C.-H. Chien, F.-M. Hsu, P.-I. Shih and C.-F. Shu,
J. Mater. Chem., 2009, 19, 1464–1470.
¨
¨
for a studentship (DT).
Notes and references
z Selected data for 1: C65 H70, M = 851.21, triclinic, space group P-1,
a = 11.383(3) A, b = 12.212(3) A, c = 19.173(5) A, a = 84.385(6)1,
b = 88.389(11)1, g = 70.418(6)1, V = 2494.3(13) A3, Z = 2, T = 150 K,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11703–11705 11705