analytical application in real water samples. Herein, we
designed a sugar functionalized fluorescent probe 1
(Scheme 1). Our strategy for the fluorescent detection of
mercury ion relies on the highly selective mercury-
mediated Ferrier carbocyclization, resulting in the forma-
tionof a fluorescent intermediateand leading toa dramatic
increase in fluorescence intensity. The introduction of a
sugar residue in fluorescent probe 1 can greatly improve its
water solubility and biocompatibility, as well as the colori-
metric and fluorescent “turn-on” selectivity and sensitivity
toward the mercury ion in 100% water.
probe 1 was obtained as a pale yellow solid in 28% overall
1
yield (Scheme 2). Probe 1 was characterized by H NMR
(Figure S1), 13C NMR (Figure S2), and mass spectra.
Scheme 2. Synthesis of Probe 1
As expected, synthetic probe 1 has good water solubility
and can completely dissolve in 100% pure water at 1 mg/mL
without adding any toxic organic cosolvent. The pH value
variation from 3.4 to 9.3 does not cause any significant
changes in fluorescence intensity (Figure S3), implying the
stability and potential application of probe 1 in an aqueous
and biological system. The aqueous solution of probe 1
(20 μM in pure water) itself is colorless and nonfluorescent
at a wavelength range of 450 to 700 nm (Figure S4). After
Hg2þ (1.0 μM in pure water) and probe 1 (20 μM) in pure
water (pH 6.0) were mixed, a weak fluorescence signal at
λex/λem = 570/594 nm was detected due to the in situ
generation of resorufin 5. The reaction proceeds relatively
fast and can be finished within 15 min. Interestingly, when
the pH value of the reaction mixture was adjusted to 6.96
(or greater) by a PBS buffer, a strong and stable fluores-
cence signal (>25 times) would suddenly appear due to the
formation of O-anionic compound 2 from resorufin 5
(Figures S5, S6). This is in accordance with the physico-
chemical property (pKa) of resorufin 5.10 Moreover, a
simultaneously purple color could be observed by the
“naked eye” under these conditions (Figure 1).
Considering the potential biological application, we set
the pH at 7.4 in the following studies to fit the natural
physiological requirement. The generation of O-anionic
compound 2 was confirmed by mass spectrometry analysis
(ESIꢀ mode, m/z 212.0) on the crude reaction solution
(namely, 1 þ HgCl2) (Figure S7), as well as the reaction
marker, carbo-sugar 3 (m/z 160.7, MꢀHþ). The fluores-
cence titration of probe 1 with an increasing amount of
Hg2þ (from 0 to 2.0 equiv) showed saturation behavior at
0.5 equiv of Hg2þ (Figure S8) in PBS buffer at pH 7.4.
Scheme 1. Mercury-Mediated Ferrier Carbocyclization of 1
Phase-transfer-catalyzed (PTC) coupling reaction of
4 and resorufin 5 was conducted in a 0.4 M aqueous
K2CO3ꢀCHCl3ꢀBu4NBr (tetrabutylammonium bromide)
system at 50 °C, and compound 6 was obtained in one pot
through consecutive glycosylation and HI elimination.
After removal of the acetyl groups with MeONa/MeOH
(keeping pH at 9), the desired water-soluble fluorescent
(3) (a) Moon, S. Y.; Youn, N. J.; Park, S. M.; Chang, S. K. J. Org.
Chem. 2005, 70, 2394–2397. (b) Ha-Thi, M. H.; Penhoat, M.; Michelet,
V.; Leray, I. Org. Lett. 2007, 9, 1133–1136. (c) Praveen, L.; Ganga, V. B.;
Thirumalai, R.; Sreeja, T.; Reddy, M. L. P.; Varma, R. L. Inorg. Chem.
2007, 46, 6277–6282.
(4) (a) Guo, X.; Qian, X.; Jia, L. J. Am. Chem. Soc. 2004, 126, 2272–
2273. (b) Zhang, H.; Han, L. F.; Zachariasse, K. A.; Jiang, Y.-B. Org.
Lett. 2005, 7, 4217–4220. (c) Avirah, R. R.; Jyothish, K.; Ramaiah, D.
Org. Lett. 2007, 9, 121–124. (d) Yoon, S.; Miller, E. W.; He, Q.; Do,
P. H.; Chang, C. J. Angew. Chem., Int. Ed. 2007, 46, 6658–6661. (e)
Shiraishi, Y.; Maehara, H.; Ishizumi, K.; Hirai, T. Org. Lett. 2007, 9,
3125–3128. (f) Ko, S.-K.; Yang, Y.-K.; Tae, J.; Shin, I. J. Am. Chem.
Soc. 2006, 128, 14150–14155.
(8) Choi, M. G.; Ryu, D. H.; Jeon, H. L.; Cha, S.; Cho, J.; Joo, H. H.;
Hong, K. S.; Lee, C.; Ahn, S.; Chang, S.-K. Org. Lett. 2008, 10, 3717–
3720.
(5) (a) Huang, J.; Xu, Y.; Qian, X. J. Org. Chem. 2009, 74, 2167–2170.
(b) Huang, W.; Song, C.; He, C.; Lv, G.; Hu, X.; Zhu, X.; Duan, C.
Inorg. Chem. 2009, 48, 5061–5072. (c) Suresh, M.; Mishra, S.; Mishra,
S. K.; Suresh, E.; Mandal, A. K.; Shrivastav, A.; Das, A. Org. Lett. 2009,
13, 2740–2743. (d) Fan, J.; Guo, K.; Peng, X.; Du, J.; Wang, J.; Sun, S.;
Li, H. Sens. Actuators, B. 2009, 142, 191–195. (e) Tian, M.; Ihmels, H.
Chem. Commun. 2009, 3175–3177. (f) Lin, W. Y.; Cao, X. W.; Ding,
Y. D.; Yuan, L.; Long, L. L. Chem. Commun. 2010, 3529–3531. (g) Jing,
W.; Wang, W. Chem. Commun. 2009, 3913–3915. (h) Shi, W.; Ma, H. M.
Chem. Commun. 2008, 1856–1858.
(9) (a) Caballero, R.; Martınez, V.; Lloveras, I.; Ratera, J.; Vidal-
´
ꢀ
Gancedo; Wurst, K.; Tarraga, A.; Molina, P.; Veciana, J. J. Am. Chem.
Soc. 2005, 127, 15666–15667. (b) Ros-Lis, J. V.; Marcos, M. D.;
ꢀ~
´
nez-Manez, R.; Rurack, K.; Soto, J. Angew. Chem., Int. Ed.
Martı
2005, 44, 4405–4407. (c) Song, K. C.; Kim, J. S.; Park, S. M.; Chung,
K. C.; Ahn, S.; Chang, S. K. Org. Lett. 2006, 8, 3413–3416. (d) Li, Y. Y.;
He, S.; Lu, Y.; Zeng, X. S. Org. Biomol. Chem. 2011, 9, 2606–2609. (e)
Tharmaraj, V.; Pitchumani, K. Nanoscale 2011, 3, 1166–1170. (f) Ma,
C.; Zeng, F.; Huang, L. F.; Wu, S. Z. J. Phys. Chem. B 2011, 115, 874–
882.
(10) (a) Klotz, A. V.; Stegeman, J. J.; Walsh, C. Anal. Biochem. 1984,
140, 138–145. (b) CRC Handbook of Chemistry & Physics, 74th ed.; Lide,
D. R., Ed.; CRC Press: Boca Raton, FL, 1993; pp 8ꢀ19.
(11) Chida, N.; Ohtsuka, M.; Ogawa, S. J. Org. Chem. 1993, 58,
4441–4447.
(6) Tang, B.; Ding, B.; Xu, K.; Tong, L. Chem.;Eur. J. 2009, 15,
3147–3151.
(7) (a) Santra, M.; Ryu, D.; Chatterjee, A.; Ko, S.-K.; Shin, I.; Ahn,
K. H. Chem. Commun. 2009, 2115–2117. (b) Lee, D.-N.; Kim, G.-J.;
Kim, H.-J. Tetrahedron Lett. 2009, 50, 4766–4768. (c) Song, F.; Watanabe,
S.; Floreancig, P. E.; Koide, K. J. J. Am. Chem. Soc. 2008, 130, 16460–
16461. (d) Ando, S.; Koide, K. J. Am. Chem. Soc. 2011, 133, 2556–2566. (e)
Santra, M.; Roy, B.; Ahn, K. H. Org. Lett. 2011, 13, 3422–3425.
Org. Lett., Vol. 14, No. 3, 2012
821