indolizidine 239CD (4), one of several naturally occurring
indolizidines that include a trans-2,5-disubstituted pyrrolidine
in their structures.4
methine ylide 9, available from the (2-azaallyl)stannane 10,
with ethylene or its equivalent. The stannane 10 should be
available from an aldehyde and an R-stannylamine.
,5
10,11
Poison frogs of the species Dendrobates histrionicus yield
The requisite aldehyde 15 was prepared by the route shown
in Scheme 2, beginning with the commercially available
alcohol 11. Oxidation, chain extension, reoxidation, protec-
tion, and unmasking of the aldehyde by oxidative cleavage
of the alkene proceeded smoothly.
four 3,5-disubstituted indolizidines, namely, 223AB, 239AB,
-9
2
39CD, and 195B (Figure 1).6 A retrosynthetic analysis
Scheme 2
Figure 1. Structures of indolizidines 239CD, 239AB, 223AB, and
95B and retrosynthetic analysis of indolizidine 239CD.
The synthesis of the phthalimide 19, the precursor of the
desired R-stannylamine, is shown in Scheme 3. Oxidation
of the commercially available alcohol 16 gave the aldehyde
1
1
7, which was treated with tri-n-butylstannyllithium to
is shown. Formation of the piperidine ring at a late stage
would rely on an intramolecular reductive amination involv-
ing 8, a well-known strategy for indolizidine synthesis. The
provide an R-hydroxy stannane. Without purification, this
9
pyrrolidine 8 would require the cycloaddition of the azo-
Scheme 3
(
6) Tokuyama, T.; Nishimori, N.; Karle, I. L.; Edwards, M. W.; Daly, J.
W. Tetrahedron 1986, 42, 3453-3460.
7) Daly, J. W.; Spande, T. F.; Whittaker, N.; Highet, R. J.; Feigl, D.;
Nishimori, N.; Tokuyama, T.; Myers, C. W. J. Nat. Prod. 1986, 49, 265-
80.
8) (a) Daly, J. W.; Spande, T. F. In Alkaloids: Chemical and Biological
PerspectiVes; Pelletier, S. W., Ed.; Wiley: New York, 1986; Vol. 4; pp
-274. (b) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In The Alkaloids;
Cordell, G. A., Ed.; Academic Press: San Diego, 1993; Vol. 43; pp 185-
88. (c) Daly, J. In The Alkaloids; Cordell, G. A., Ed.; Academic Press:
(
2
(
1
2
New York, 1997; Vol. 50. (d) Daly, J. W.; Garraffo, H. M.; Spande, T. F.
In Alkaloids: Chemical and Biological PerspectiVes; Pelletier, S. W., Ed.;
John Wiley & Sons: New York, 1999; Vol. 13; p 1.
(
9) Many syntheses of these and related indolizidines have been
published. For the latest in a series of reviews covering the synthesis of
indolizidines and pyrrolizidines, see: (a) Michael, J. P. Nat. Prod. Rep.
alcohol was transformed into the bromide 18 in good yield,
which was subjected to displacement chemistry to provide
the pthlalimide 19.
Completion of the synthesis of indolizidine 239CD is
shown in Scheme 4. Hydrazinolysis of the pthalimide 19
1
998, 15, 571-594. For syntheses of indolizidines 195B, 223AB, 239AB,
and 239CD by an approach involving trans-2,5-disubstituted pyrrolidines,
see: (b) Machinaga, N.; Kibayashi, C. J. Org. Chem. 1992, 57, 5178-
5
1
2
189. (c) Machingaga, N.; Kibayashi, C. J. Chem. Soc., Chem. Commun.
991, 405-407. For other approaches to indolizidines 195B, 223AB, and
39AB involving trans-2,5-disubstituted pyrrolidines, see: (d) Thanh, G.
V.; Celerier, J. P.; Lhommet, G. Tetrahedron: Asymmetry 1996, 7, 2211-
212. (e) C e´ lim e` ne, C.; Lhommet, G. Tetrahedron 1998, 54, 10457-10468.
f) Dhimane, H.; Vanucci-Bacqu e´ , C.; Hamon, L.; Lhommet, G. Eur. J.
(10) Pearson, W. H.; Postich, M. J. J. Org. Chem. 1992, 57, 6354-
6357.
2
(
(11) Chong, J. M.; Park, S. B. J. Org. Chem. 1992, 57, 2220-2222.
(12) See ref 1 for a comparison with existing methods for the generation
of nonstabilized N-substituted and N-unsubstituted azomethine ylides.
Regarding nonstabilized N-unsubstituted azomethine ylides, two other
methods for their generation are known, the decarboxylation of imines
derived from the condensation of R-amino acids with aldehydes [leading
references: (a) Tsuge, O.; Kanemasa, S.; Ohe, M.; Takenaka, S. Bull. Soc.
Chem. Jpn. 1987, 60, 4079-4089. (b) Ardill, H.; Grigg, R.; Sridharan, V.;
Surendrakumar, S. Tetrahedron 1988, 44, 4953-4966] and the water-
induced generation of such ylides from N-(silylmethyl)imines [Tsuge, O.;
Kanemasa, S.; Hatada, A.; Matsuda, K. Bull. Soc. Chem. Jpn. 1986, 59,
2537-2545]. The first method suffers from low yields and poor trans:cis
stereoselectivity, while the second is limited to nonenolizable imines with
no branching next to silicon (i.e., monosubstituted azomethine ylides).
Org. Chem. 1998, 1955-1963. For selected additional syntheses of
indolizidine 195B, see: (g) Bloch, R.; Brillet-Fernandez, C.; K u¨ hn, P.;
Mandville, G. Heterocycles 1994, 38, 1589-1594. (h) Solladie, G.; Chu,
G.-H. Tetrahedron Lett. 1996, 37, 111-14. (i) Lee, E.; Kang, T. S.; Chung,
C. K. Bull. Korean Chem. Soc. 1996, 17, 212-14. (j) Somfai, P.; Jarevang,
T.; Lindstrom, U. M.; Svensson, A. Acta Chem. Scand. 1997, 51, 1024-
1
029. For selected additional syntheses of indolizidine 223AB, see: (k)
Watanabe, Y.; Iida, H.; Kibayashi, C. J. Org. Chem. 1989, 54, 4088-97.
l) Taber, D. F.; Deker, P. B.; Silverberg, L. J. J. Org. Chem. 1992, 57,
(
5
1
1
990-5994. (m) Pilli, R. A.; Dias, L. C.; Maldaner, A. O. J. Org. Chem.
995, 60, 717-722. (n) Takahata, H.; Bandoh, H.; Momose, T. Heterocycles
995, 41, 1797-1804. (o) Momose, T.; Toshima, M.; Seki, S.; Koike, Y.;
Toyooka, N.; Hirai, Y. J. Chem. Soc., Perkin Trans. 1 1997, 1315-1321.
350
Org. Lett., Vol. 1, No. 2, 1999