Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Anal. Chem. 2001, 73, 939-942
Intramolecular Fluorescence Resonance Energy
Transfer System with Coumarin Donor Included in
â-Cyclodextrin
Hideo Takakusa, Kazuya Kikuchi, Yasuteru Urano, Tsunehiko Higuchi, and Tetsuo Nagano*
Graduate School of Pharmaceutical Sciences, the University of Tokyo,7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
possible. Recently, Tsien and co-workers reported several indica-
tors using FRET for the detection of adenosine 3′,5′-cyclic
monophosphate (cAMP),3 calcium cation,4 and â-lactamase2 activ-
ity, and they employed these probes for assays at physiological
concentrations and for imaging activity changes in living cells.
Peptides bearing fluorescent dyes have been widely used in the
protease assay.5 FRET peptide probes are superior to single dye-
labeled probes for this biological application, because we can
observe the ratio of the fluorescence. However, it is difficult to
obtain such FRET peptide probes, because peptides in aqueous
solutions take conformations such that the donor and acceptor
moieties are in close proximity, and the emissions of the fluoro-
phores are quenched.6 This quenching mechanism can be
explained in terms of ground-state complex formation.7 It has been
reported that the fluorescence quenching of the ground-state dye-
to-dye complex formation is observed in various fluorophore pairs.6
In general, if the fluorophores have the hydrophobic character-
istics, they would form dye-to-dye close contact in aqueous
environment and the fluorescence should be quenched.8,10 For
practical use of peptide-based FRET probes, it is necessary to
employ conformationally constrained oligopeptides such as pro-
In aqueous solutions, the fluorescence of the intramo-
lecular fluorescence resonance energy-transfer (FRET)
system 1 was strongly quenched, because of close contact
between the donor and acceptor moieties. FRET occurred,
and the acceptor fluorescence was increased, by adding
â-cyclodextrin (â-CD) to aqueous solutions of 1 . Spectral
analysis supported the idea that the FRET enhancement
was due to the formation of an inclusion complex of the
coumarin moiety in â-CD, resulting in separation of the
fluorophores. On the basis of this result, we propose that
covalent binding of coumarin to â-CD will provide a FRET
cassette molecule. So, compound 2 bearing â-CD co-
valently was designed and synthesized. Fluorescence
intensity of 2 was enhanced markedly compared to the
intensity of 3 . Applying this FRET system, various FRET
probes that will be useful for ratio imaging and also the
high-throughput screening will be provided.
In recent years, many fluorescent probes1 have been developed
to study biological phenomena in living cells. A fluorescence
resonance energy-transfer (FRET) technique was used in some
fluorescent probes. FRET is an interaction between the electronic
excited states of two fluorophores, in which excitation energy is
transferred from a donor to an acceptor without emission of a
photon. The FRET technique has been applied to probe biological
systems and also for high-throughtput screening of combinatorial
libraries,2 by means of ratiometric measurements. Ratiometric
measurements are methods that observe the changes in the ratio
of the fluorescence intensities at two wavelengths. Using ratio-
metric measurements, it is possible to reduce the influence of
many artifacts due to the change of the probe concentration and
excitation intensity. Therefore, this technique allows more precise
measurements, and with some probes, quantitative detection is
(3) Adams, S. R.; Harootunian, A. T.; Buechler, Y. J.; Taylor, S. S.; Tsien, R. Y.
Nature 1 9 9 1 , 349, 694-697.
(4) Miyawaki, A.; Llopis, J.; Heim, R.; McCaffery, J. M.; Adams, J. A.; Ikura,
M.; Tsien, R. Y. Nature 1 9 9 7 , 388, 882-887.
(5) (a) Matayoshi, E.; Wang, G. T.; Krafft, G. A.; Erickson, J. Science 1 9 9 0 ,
247, 954-958. (b) Garcia-Echeveria, C.; Rich, D. H. FEBS Lett. 1 9 9 2 , 297,
100-102. (c) Gurtu, V.; Kain, S. R.; Zhang, G. Anal. Biochem. 1 9 9 7 , 251,
98-102. (d) Packard, B. Z.; Toptygin, D. D.; Komoriya, A.; Brand, L. Proc.
Natl. Acad. Sci. U.S.A. 1 9 9 6 , 93, 11640-11645.
(6) (a) Mizukami, S.; Kikuchi, K.; Higuchi, T.; Urano, Y.; Mashima, T.; Tsuruo,
T.; Nagano, T. FEBS Lett. 1 9 9 9 , 453, 356-360. (b) Daugherty, D. L.;
Gellman, S. H. J. Am. Chem. Soc. 1 9 9 9 , 121, 4325-4333. (c) Geoghegan,
K. L.; Rosner, P. J.; Hoth, L. R. Bioconjugate Chem. 2 0 0 0 , 11, 71-77. (d)
Wei, A.; Blumenthal, D. K.; Herron, J. N. Anal. Chem. 1 9 9 4 , 66, 1500-
1506. (e) Loura, L. M. S.; Fedorov, A.; Prieto, M. J. Phys. Chem. B 2 0 0 0 ,
104, 6920-6931. (f) Jones, L. J.; Upson, R. H.; Haugland, R. P.; Panchuk-
Voloshina, N.; Zhou, M.; Haugland, R. P. Anal. Biochem. 1 9 9 7 , 251, 144-
152. (g) Packard, B. Z.; Komoriya, A.; Toptygin, D. D.; Brand, L. J. Phys.
Chem. B 1 9 9 7 , 101, 5070-5074. (h) Packard, B. Z.; Komoriya, A.; Toptygin,
D. D.; Brand, L. Proc. Natl. Acad. Sci. U.S.A. 1 9 9 6 , 93, 11640-11645. (i)
Zych, A. J.; Iverson, B. L. J. Am. Chem. Soc. 2 0 0 0 , 122, 8898-8909.
(7) Packard, B. Z.; Toptygin, D. D.; Komoriya, A.; Brand, L. Biophys. Chem.
1 9 9 7 , 67, 167-176.
(8) (a) Valdes-Aguilera, O.; Neckers, D. C. Acc. Chem. Res. 1 9 8 9 , 22, 171-
177. (b) West, W.; Pearce, S. J. Phys. Chem. 1 9 6 5 , 69, 1894-1903.
(9) (a) Li, Y.; Glazer, A. N. Bioconjugate Chem. 1999, 10, 241-245. (b) Imperiali,
B.; Rickert, K. W. Proc. Natl. Acad. Sci. U.S.A. 1 9 9 5 , 92, 97-101.
(10) Kawanishi, Y.; Kikuchi, K.; Takakusa, H.; Mizukami, S.; Urano, Y.; Higuchi,
T.; Nagano, T. Angew. Chem., Int. Ed. 2 0 0 0 , 39, 3438-3440.
* Corresponding author: (e-mail) tlong@mol.f.u-tokyo.ac.jp; (fax) +81-3-5841-
4855.
(1) (a) Kojima, K.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi,
H.; Hirata, Y.; Nagano, T. Anal. Chem. 1 9 9 8 , 70, 2446-2453. (b) Hirano,
T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Angew. Chem., Int. Ed.
2 0 0 0 , 39, 1052-1054. (c) Umezawa, N.; Tanaka, K.; Urano, Y.; Kikuchi,
K.; Higuchi, T.; Nagano, T. Angew. Chem., Int. Ed. Engl. 1 9 9 9 , 38, 2899-
2901. (d) Seifert, J. L.; Connor, R. E.; Kushon, S. A.; Wang, M.; Armitage,
B. A. J. Am. Chem. Soc. 1 9 9 9 , 121, 2987-2995. (e) Niikura, K.; Metzger,
A.; Anslyn, E. V. J. Am. Chem. Soc. 1 9 9 8 , 120, 8533-8534.
(2) (a) Zlokarnik, G.; Negulescu, P. A.; Knapp, T. E.; Mere, L.; Burres, N.; Feng,
L.; Whitney, M.; Roemer, K.; Tsien, R. Y. Science 1 9 9 8 , 279, 84-88. (b)
Giuliano, K. A.; Taylor, D. L. Trends Biotechnol. 1 9 9 8 , 16, 135-140.
10.1021/ac001016a CCC: $20.00 © 2001 American Chemical Society
Published on Web 01/26/2001
Analytical Chemistry, Vol. 73, No. 5, March 1, 2001 939