ORGANIC
LETTERS
2007
Vol. 9, No. 11
2175-2178
Desymmetrization of
1,4-Cyclohexadienyltriisopropoxysilane
Using Copper Catalysis
Rui Umeda and Armido Studer*
Organisch-Chemisches Institut, Westfa¨lische Wilhelms-UniVersita¨t, Corrensstrasse 40,
48149 Mu¨nster, Germany
Received March 21, 2007
ABSTRACT
The first catalytic desymmetrization in the field of allylsilane chemistry is presented. Desymmetrization of cyclohexadienyltriisopropoxysilane
is achieved using coppper catalysis. High diastereo- and enantioselectivities are obtained, and the product dienes are highly valuable building
blocks for natural product synthesis.
Various allylmetal compounds have been successfully used
for the asymmetric allylation of aldehydes.1 Allylsilanes have
often been applied as nucleophiles in these reactions. They
are stable compounds, and some of them are commercially
available. Importantly, allylsilanes are nontoxic and generally
stable toward moisture. However, most of the allylsilanes
are not reactive enough to undergo spontaneous addition to
an aldehyde, and Lewis acid activation of the aldehyde is
necessary.2 Activation of allylsilanes can also be achieved
by Lewis bases.3 A third option is the transmetalation of an
allylsilane to generate a reactive allylmetal species that is
able to react with an aldehyde. In fact, Cu(I)-4 and Ag(I)-
catalyzed5 enantioselective allylations of various aldehydes
using readily available allyltrialkoxysilanes have been pub-
lished. Achiral Cd(II) complexes have also been reported to
catalyze the allylation of aldehydes using trialkoxyallylsi-
lanes.6 Moreover, hydrazones and activated imines were
successfully allylated by allylsilanes using chiral Zn7 and
Cu complexes.8
We have recently reported the desymmetrization9 of 1,4-
cyclohexadiene using the chiral Ti(IV) complex 1. The
synthetically highly valuable 1,3-cyclohexadienes 2 were
obtained with high diastereo- and enantioselectivities (Scheme
1).10 In these reactions the differentiation of the two
(5) (a) Yanagisawa, A.; Kageyama, H.; Nakatsuka, Y.; Asakawa, K.;
Matsumoto, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 1999, 38, 3701. (b)
Wadamoto, M.; Ozasa, N.; Yanagisawa, A.; Yamamoto, H. J. Org. Chem.
2003, 68, 5593. (c) Wadamoto, M.; Yamamoto, H. J. Am. Chem. Soc. 2005,
127, 14556.
(6) (a) Aoyama, N.; Hamada, T.; Manabe, K.; Kobayashi, S. Chem.
Commun. 2003, 676. (b) Aoyama, N.; Hamada, T.; Manabe, K.; Kobayashi,
S. J. Org. Chem. 2003, 68, 7329.
(7) Hamada, T.; Manabe, K.; Kobayashi, S. Angew. Chem., Int. Ed. 2003,
42, 3927.
(8) Kiyohara, H.; Nakamura, Y.; Matsubara, R.; Kobayashi, S. Angew.
Chem., Int. Ed. 2006, 45, 1615.
(9) (a) Studer, A.; Schleth, F. Synlett 2005, 3033. (b) Hoffman, R. W.
Synthesis 2004, 2075. (c) Rahman Abd, N.; Landais, Y. Curr. Org. Chem.
2002, 6, 1369. (c) Willis, M. C. J. Chem. Soc., Perkin Trans. 1 1999, 1765.
(10) (a) Schleth, F.; Studer, A. Angew. Chem., Int. Ed. 2004, 43, 313.
(b) Schleth, F.; Vogler, T.; Harms, K.; Studer, A. Chem. Eur. J. 2004, 10,
4171.
(1) (a) In Houben-Weyl; Helmchen, G., Hoffmann, R. W., Mulzer, J.,
Schaumann, E., Eds.; Thieme: Stuttgart, 1995; Vol. E21 b, pp 1357-1602.
(b) Yamamoto, Y.; Asao, N. Chem. ReV. 1993, 93, 2207. (c) Denmark, S.
E.; Fu, J. Chem. ReV. 2003, 103, 2763.
(2) (a) Fleming, I.; Barbero, A.; Walter, D. Chem. ReV. 1997, 97, 2063.
(b) Thomas, E. J. Allylsilanes. In Houben-Weyl; Helmchen, G., Hoffmann,
R. W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart, 1995; Vol. E21
b, p 1491.
(3) (a) Malkov, A. V.; Dufkova´, L.; Farrugia, L.; Kocˇovsky´, P. Angew.
Chem., Int. Ed. 2003, 42, 3674. (b) Denmark, S. E.; Fu, J. Chem. Commun.
2003, 167. (c) Berger, R.; Rabbat, P. M. A.; Leighton, J. L. J. Am. Chem.
Soc. 2003, 125, 9596.
(4) (a) Yamasaki, S.; Fujii, K.; Wada, R.; Kanai, M.; Shibasaki, M. J.
Am. Chem. Soc. 2002, 124, 6536. (b) Itoh, T.; Miyazaki, M.; Fukuoka, H.;
Nagata, K.; Ohsawa, A. Org. Lett. 2006, 8, 1295.
10.1021/ol070689d CCC: $37.00
© 2007 American Chemical Society
Published on Web 04/26/2007