C O M M U N I C A T I O N S
Such observations are consistent with Whitworth’s proposal made for
human OGA that a broad high energy series of species encompassing
a late transition state are found along the reaction coordinate.23 The
description of a 1S3T4H3T4C1 pathway for oxazoline formation,
presented here, coupled to solution studies on OGA transition-state
poise23 therefore provides the first sighting of an oxazoline intermediate
bound to any glycoside hydrolase using substrate assisted catalysis
and coherently defines the conformational itinerary of this class of
enzymes.
Acknowledgment. This work was funded by the Biotechnology
and Biological Sciences Research Council (BBSRC) and the
Canadian Institutes of Health Research and the Natural Sciences
and Engineering Research Council of Canada (NSERC). G.J.D. is
a Royal Society-Wolfson Research Merit award recipient. D.J.V.
is a Canada Research Chair in chemical glycobiology and a Scholar
of the Michael Smith Foundation for Health Research (MSFHR).
M.S.M. holds scholarships from NSERC and the MSFHR.
Supporting Information Available: Details of organic synthesis
of compound 1, structure solution and refinement and steady and
presteady-state kinetics. Movie of the Michaelis complex of BtGH84
with 1 and schematic diagram of interactions of the compound 3 derived
oxazoline intermediate. This material is available free of charge via
Figure 4. Electrophilic migration21 along the reaction coordinate of
O-GlcNAc hydrolases. (a) Presteady state kinetics for the hydrolysis of 3
with the D242N variant at pH 8.5. (b) Overlap of the D242N trapped
oxazoline intermediate (gray) overlaid with the Michaelis complex of
unhydrolysed 1. (c) Simplified schematic representation of the “electrophilic
migration” of the anomeric carbon from the Michaelis complex (1,4B/1S3
conformation) through to the oxazoline intermediate in the 4C1 conformation.
References
for this experiment, we observe that this oxazoline and the D243N
5F-oxazoline complex bind with essentially identical interactions
in the active center. Notably, the oxazoline ring itself is stabilized
through sandwiching between the aromatic planes of Trp337 and
Tyr282 with the oxazoline nitrogen and oxygen hydrogen bonding
with Asp242 and Asn339 respectively (Supplemental Figure 2). In
both trapped intermediates a potential hydrolytic water (colored
purple in Figure 3b,c) lies ∼3.6 Å above the anomeric carbon poised
for nucleophilic attack.
(1) Hart, G. W.; Housley, M. P.; Slawson, C. Nature 2007, 446, 1017–1022.
(2) Fujiki, R.; Chikanishi, T.; Hashiba, W.; Ito, H.; Takada, I.; Roeder, R. G.;
Kitagawa, H.; Kato, S. Nature 2009, 459, 455–U179.
(3) Sinclair, D. A. R.; Syrzycka, M.; Macauley, M. S.; Rastgardani, T.;
Komljenovic, I.; Vocadlo, D. J.; Brock, H. W.; Honda, B. M. Proc. Natl.
Acad. Sci. U.S.A. 2009, 106, 13427–13432.
(4) Gambetta, M. C.; Oktaba, K.; Muller, J. Science 2009, 325, 93–96.
(5) Dentin, R.; Hedrick, S.; Xie, J. X.; Yates, J.; Montminy, M. Science 2008,
319, 1402–1405.
(6) Liu, F.; Iqbal, K.; Grundke-Iqbal, I.; Hart, G. W.; Gong, C. X. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 10804–10809.
(7) Yuzwa, S. A.; Macauley, M. S.; Heinonen, J. E.; Shan, X.; Dennis, R. J.;
He, Y.; Whitworth, G. E.; Stubbs, K. A.; McEachern, E. J.; Davies, G. J.;
Vocadlo, D. J. Nat. Chem. Biol. 2008, 4, 483–490.
Together, the Michaelis complex revealing the pyranose ring
adopts a 1S3 skew boat conformation and the oxazoline intermediate
showing a 4C1 chair conformation point to a 1S3T4H3T4C1
conformational itinerary that defines the reaction coordinate for the
formation of the oxazoline intermediate. As is clearly demonstrated
through an overlap of the Michaelis and oxazoline complexes
(Figure 4b), such a pathway is an exemplar of what Schramm has
described as an “electrophilic migration”21 mechanism in which
the anomeric carbon follows a pathway migrating from bonded
contact with the leaving group “above” the plane of the pyranose
ring to bonded contact with the waiting nucleophile “below” the
plane with only minimal motion of other substrate atoms (Figure
4c).15 Recent metadynamic studies have revealed that the 1S3
conformation not only is a local free-energy minimum but also is
“pre-activated” for in-line nucleophilic attack, and in the case of
the ꢀ-D-gluco configuration,22 this conformation maximizes the
charge distribution across the C1-O1 bond, lengthening this bond
while minimizing the O5-C1 distance, features that all favor the
electrophilic migration of C1 through the transition state. Interestingly,
we find that the thiazoline analogue, which is a potent transition state
analogue and has been proposed to emulate the transition state, binds
quite similarly to BtGH84 as do the oxazolines. The C1-S bond (1.85
Å), which is longer than the C1-O bond (1.45 Å), places the C1
carbon of the thiazoline ∼0.2 Å closer to the position of C1 in the
Michaelis complex than the C1 of the oxazoline reaction intermediate.
(8) Wang, Z.; Gucek, M.; Hart, G. W. Proc. Natl. Acad. Sci. U.S.A. 2008,
105, 13793–13798.
(9) Macauley, M. S.; Vocadlo, D. J. Biochim. Biophys. Acta 2009, http://
dx.doi.org/10.1016/j.bbagen.2009.07.028.
(10) Rao, F. V.; Dorfmueller, H. C.; Villa, F.; Allwood, M.; Eggleston, I. M.;
van Aalten, D. M. EMBO J. 2006, 25, 1569–1578.
(11) Dennis, R. J.; Taylor, E. J.; Maculey, M. S.; Stubbs, K. A.; Turkenburg,
J. P.; Hart, S. J.; Black, G.; Vocadlo, D. J.; Davies, G. J. Nat. Struct. Mol.
Biol. 2006, 13, 365–371.
(12) Martinez-Fleites, C.; He, Y.; Davies, G. J. Biochim. Biophys. Acta 2009,
(13) Macauley, M. S.; Whitworth, G. E.; Debowski, A. W.; Chin, D.; Vocadlo,
D. J. J. Biol. Chem. 2005, 280, 25313–25322.
(14) Schwartz, S. D.; Schramm, V. L. Nat. Chem. Biol. 2009, 5, 551–558.
(15) Vocadlo, D.; Davies, G. J. Curr. Opin. Chem. Biol. 2008, 12, 539–555.
(16) Greig, I. R.; Macauley, M. S.; Williams, I. H.; Vocadlo, D. J. J. Am. Chem.
Soc. 2009, 131, 13415–13422.
(17) van Aalten, D. M. F.; Komander, D.; Synstad, B.; Gaseidnes, S.; Peter,
M. G.; Eijsink, V. G. H. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 8979–
8984.
(18) Tews, I.; Perrakis, A.; Oppenheim, A.; Dauter, Z.; Wilson, K. S.; Vorgias,
C. E. Nat. Struct. Biol. 1996, 3, 638–648.
(19) Rempel, B. P.; Withers, S. G. Glycobiology 2008, 18, 570–586.
(20) Stubbs, K. A.; Scaffidi, A.; Debowski, A. W.; Mark, B. L.; Stick, R. V.;
Vocadlo, D. J. J. Am. Chem. Soc. 2008, 130, 327–335.
(21) Fedorov, A.; Shi, W.; Kicska, G.; Fedorov, E.; Tyler, P. C.; Furneaux,
R. H.; Hanson, J. C.; Gainsford, G. J.; Larese, J. Z.; Schramm, V. L.; Almo,
S. C. Biochemistry 2001, 40, 853–860.
(22) Biarnes, X.; Ardevol, A.; Planas, A.; Rovira, C.; Laio, A.; Parrinello, M.
J. Am. Chem. Soc. 2007, 129, 10686–10693.
(23) Whitworth, G. E.; Macauley, M. S.; Stubbs, K. A.; Dennis, R. J.; Taylor,
E. J.; Davies, G. J.; Greig, I. R.; Vocadlo, D. J. J. Am. Chem. Soc. 2007,
129, 635–644.
JA9086769
9
J. AM. CHEM. SOC. VOL. 132, NO. 6, 2010 1809