The Journal of Physical Chemistry A
Article
(
13) Park, M. S.; Swamy, K. M. K.; Lee, Y. J.; Lee, H. N.; Jang, Y. J.;
ASSOCIATED CONTENT
■
Moon, Y. H.; Yoon, J. A New Acridine Derivative as a Fluorescent
Chemosensor for Zinc Ions in an 100% Aqueous Solution: A
Comparison of Binding Property with Anthracene Derivative.
Tetrahedron Lett. 2006, 47, 8129−8132.
*
S
Supporting Information
Compound characterization data ( H NMR, 13C NMR, FAB-
1
MS, Figures S1−S6), time dependence for fluorescence
enhancement (Figure S7), effect of other metal cations
fluorescence spectra, Figures S8 and S9), Job’s plot (Figure
(
14) Shiraishi, Y.; Ichimura, C.; Hirai, T. A Quinoline−Polyamine
(
Conjugate as a Fluorescent Chemosensor for Quantitative Detection
S10), ESI-MS charts (Figures S11 and 12), fluorescence
titration data (Figure S13), gCOSY charts (Figures S14−S16),
IR spectra (Figure S17), fluorescence decay data (Figure S18),
absorption spectra (Figure S19), and Cartesian coordinates for
of Zn(II) in Water. Tetrahedron Lett. 2007, 48, 7769−7773.
(15) Xu, H.; Miao, R.; Fang, Z.; Zhong, X. Quantum Dot-Based
“
Turn-On” Fluorescent Probe for Detection of Zinc and Cadmium
Ions in Aqueous Media. Anal. Chim. Acta 2011, 687, 82−88.
(16) Wang, Y.; Hu, X.; Wang, L.; Shang, Z.; Chao, J.; Jin, W. A New
Acridine Derivative as a Highly Selective ‘Off−On’ Fluorescence
Chemosensor for Cd2 in Aqueous Media. Sens. Actuators B 2011, 156,
126−131.
+
AUTHOR INFORMATION
■
2
+
(
17) Xue, L.; Liu, Q.; Jiang, H. Ratiometric Zn Fluorescent Sensor
2+
and New Approach for Sensing Cd by Ratiometric Displacement.
*
Org. Lett. 2009, 11, 3454−3457.
Notes
(18) Xue, L.; Liu, C.; Jiang, H. Highly Sensitive and Selective
The authors declare no competing financial interest.
Fluorescent Sensor for Distinguishing Cadmium from Zinc Ions in
Aqueous Media. Org. Lett. 2009, 11, 1655−1658.
(19) Yunus, S.; Charles, S.; Dubois, F.; Donckt, E. V. Simultaneous
Determination of Cadmium (II) and Zinc (II) by Molecular
Fluorescence Spectroscopy and Multiple Linear Regression Using an
Anthrylpentaazamacrocycle Chemosensor. J. Fluoresc. 2008, 18, 499−
506.
ACKNOWLEDGMENTS
■
This work was supported by the Grant-in-Aid for scientific
Research (No. 23656504) from the Ministry of Education,
Culture, Sports, Science and Technology, Japan (MEXT). S.S.
thanks the Japan Society for the Promotion of Science (JSPS)
Research Fellowship for Young Scientists.
(20) Charles, S.; Dubois, F.; Yunus, S.; Donckt, E. V. Determination
by Fluorescence Spectroscopy of Cadmium at the Subnanomolar
Level: Application to Seawater. J. Fluoresc. 2000, 10, 99−105.
REFERENCES
■
(21) Gunnlaugsson, T.; Lee, T. C.; Parkesh, R. Highly Selective
(
1) Vallee, B. L.; Falchuk, K. H. The Biochemical Basis of Zinc
Fluorescent Chemosensors for Cadmium in Water. Tetrahedron 2004,
0, 11239−11249.
22) Xu, Z.; Baek, K.-H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. R.;
Physiology. Physiol. Rev. 1993, 73, 79−118.
6
(
̈
́ ́
2) Kury, S.; Dreno, B.; Bezieau, S.; Giraudet, S.; Kharfi, M.;
(
Kamoun, R.; Moisan, J.-P. Identification of SLC39A4, a Gene Involved
in Acrodermatitis Enteropathica. Nat. Genet. 2002, 31, 239−240.
2+
Shin, I.; Yoon, J. Zn -Triggered Amide Tautomerization Produces a
Highly Zn -Selective, Cell-Permeable, and Ratiometric Fluorescent
2+
(
3) Berg, J. M.; Shi, Y. The Galvanization of Biology: A Growing
Sensor. J. Am. Chem. Soc. 2010, 132, 601−610.
Appreciation for the Roles of Zinc. Science 1996, 271, 1081−1085.
4) Satarug, S.; Baker, J. R.; Urbenjapol, S.; Haswell-Elkins, M.;
(23) Drexhage, K. H. Topics in Applied Physics; Springer-Verlag:
(
Berlin, 1973.
24) Senda, N.; Momotake, A.; Nishimura, Y.; Arai, T. Synthesis and
Reilly, P. E. B.; Williams, D. J.; Moore, M. R. A Global Perspective on
Cadmium Pollution and Toxicity in Non-occupationally Exposed
Population. Toxicol. Lett. 2003, 137, 65−83.
(
Photochemical Properties of a New Water-Soluble Coumarin,
Designed as a Chromophore for Highly Water-Soluble and Photolabile
Protecting Group. Bull. Chem. Soc. Jpn. 2006, 79, 1753−1757.
(25) Thapper, A.; Behrens, A.; Fryxelius, J.; Johansson, M. H.;
Prestopino, F.; Czaun, M.; Rehder, D.; Nordlander, E. Synthesis and
Characterization of Molybdenum Oxo Complexes of Two Tripodal
Ligands: Reactivity Studies of a Functional Model for Molybdenum
Oxotransferases. Dalton Trans. 2005, 3566−3571.
(
5) Liu, T.; Liu, S. Responsive Polymers-Based Dual Fluorescent
2+
Chemosensors for Zn Ions and Temperatures Working in Purely
Aqueous Media. Anal. Chem. 2011, 83, 2775−2785.
6) Jung, H. S.; Ko, K. C.; Lee, J. H.; Kim, S. H.; Bhuniya, S.; Lee, J.
(
Y.; Kim, Y.; Kim, S. J.; Kim, J. S. Rationally Designed Fluorescence
Turn-On Sensors: A New Design Strategy Based on Orbital Control.
Inorg. Chem. 2010, 49, 8552−8557.
(
7) Ambrosi, G.; Formica, M.; Fusi, V.; Giorgi, L.; Macedi, E.;
(26) Kim, H. M.; Seo, M. S.; An, M. J.; Hong, J. H.; Tian, Y. S.; Choi,
Micheloni, M.; Paoli, P.; Pontellini, R.; Rossi, P. Efficient Fluorescent
Sensors Based on 2,5-Diphenyl[1,3,4]oxadiazole: A Case of Specific
Response to Zn(II) at Physiological pH. Inorg. Chem. 2010, 49, 9940−
J. H.; Kwon, O.; Lee, K. J.; Cho, B. R. Two-Photon Fluorescent Probes
for Intracellular Free Zinc Ions in Living Tissue. Angew. Chem., Int. Ed.
2
(
008, 47, 5167−5170.
9
(
948.
27) Dahm, K. G.; Guerra, K. L.; Xu, P.; Drewes, J. E. Composite
8) Tamanini, E.; Katewa, A.; Sedger, L. M.; Todd, M. H.;
Watkinson, M. A Synthetically Simple, Click-Generated Cyclam-
Based Zinc(II) Sensor. Inorg. Chem. 2009, 48, 319−324.
9) Ravikumar, I.; Ghosh, P. Zinc(II) and PPi Selective Fluorescence
Geochemical Database for Coalbed Methane Produced Water Quality
in the Rocky Mountain Region. Environ. Sci. Technol. 2011, 45, 7655−
7
663.
(
(28) Wang, J.; Qian, X. Two Regioisomeric and Exclusively Selective
OFF−ON−OFF Functionality of a Chemosensor in Physiological
Hg(II) Sensor Molecules Composed of a Naphthalimide Fluorophore
and an o-Phenylenediamine Derived Triamide Receptor. Chem.
Commun. 2006, 109−111.
Conditions. Inorg. Chem. 2011, 50, 4229−4231.
(
10) Swamy, K. M. K.; Kim, M. J.; Jeon, H. R.; Jung, J. Y.; Yoon, J.
New 7-Hydroxycoumarin-Based Fluorescent Chemosensors for Zn(II)
and Cd(II). Bull. Korean Chem. Soc. 2010, 31, 3611−3616.
11) Atilgan, S.; Ozdemir, T.; Akkaya, E. U. A Sensitive and Selective
Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on the
Distyryl−Bodipy Fluorophore. Org. Lett. 2008, 10, 4065−4067.
12) Wu, J.-S.; Liu, W.-M.; Zhuang, X.-Q.; Wang, F.; Wang, P.-F.;
(29) Sahoo, H. S.; Chand, D. K.; Mahalakshmi, S.; Mir, M. H.;
Raghunathan, R. Manifestation of Diamagnetic Chemical Shifts of
Proton NMR Signals by an Anisotropic Shielding Effect of Nitrate
Anions. Tetrahedron Lett. 2007, 48, 761−765.
(
́
(30) Bender, M. L.; Clement, G. E.; Kezdy, F. J.; Heck, H. D. The
(
Tao, S.-L.; Zhang, X.-H.; Wu, S.-K.; Lee, S.-T. Fluorescence Turn On
of Coumarin Derivatives by Metal Cations: A New Signaling
Mechanism Based on CN Isomerization. Org. Lett. 2007, 9, 33−36.
Correlation of the pH (pD) Dependence and the Stepwise Mechanism
of α-Chymotrypsin-Catalyzed Reactions. J. Am. Chem. Soc. 1964, 86,
3680−3690.
1
481
dx.doi.org/10.1021/jp3111315 | J. Phys. Chem. A 2013, 117, 1474−1482