Journal of the American Chemical Society
Page 8 of 9
1
2
3
4
5
6
7
8
9
36
molecular dinitrogen by use of dinitrogen-bridged dimolybdenum–
Gas-phase BDFE values are consistently lower than those of solution
species. However, complications arising from differential hydrogen bond-
ing behavior precludes simple application of a correction factor that would
better correlate the gas phase DFT-predicted value with the solution phase
values inferred from experimental data.
dinitrogen complexes bearing PNP-pincer Ligands: remarkable effect of
substituent at PNP-pincer ligand. J. Am. Chem. Soc. 2014, 136, 9719-
9731.
16 Anderson, J. S.; Rittle, J.; Peters, J. C. Catalytic conversion of nitrogen
37
to ammonia by an iron model complex. Nature 2013, 501, 84-87.
Bühl, M.; Grigoleit, S. Molecular dynamics of neutral and protonated
17
Del Castillo, T. J.; Thompson, N. B.; Peters, J. C. A synthetic single-
ferrocene. Organometallics 2005, 24, 1516-1527.
site Fe nitrogenase: high turnover, freeze-quench 57Fe Mössbauer data,
38
Sharma, N.; Ajay, J. K.; Venkatasubbaiah, K.; Lourderaj, U. Mecha-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
and a hydride resting state. J. Am. Chem. Soc. 2016, 138, 5341-5350.
nisms and dynamics of protonation and lithiation of ferrocene. Phys.
Chem. Chem. Phys. 2015, 17, 22204-22209.
18 Anderson, J. S.; Cutsail, G. E. III; Rittle, J.; Connor, B. A.; Gunderson,
W. A.; Zhang, L.; Hoffman, B. M.; Peters, J. C. Characterization of an
Fe≡N–NH2 intermediate relevant to catalytic N2 reduction to NH3. J. Am.
Chem. Soc. 2015, 137, 7803-7809.
39 Geiger, W. E.; Bowden, W. L.; El Murr, N. An electrochemical study of
the protonation site of the cobaltocene anion and of cyclopentadienylco-
balt(I) dicarbollides. Inorg. Chem. 1979, 18, 2358-2361.
19
40 Werner, H.; Dernberger, T. Untersuchungen zur Reaktivität von Metall-
π-Komplexen: XXXIII. Synthese und Reaktivität von Decamethyl- und
Pentamethylnickellocen. J. Organomet. Chem. 1980, 198, 97-103.
Thompson, N. B.; Green, M. T.; Peters, J. C. Nitrogen fixation via a
terminal Fe(IV) nitride. J. Am. Chem. Soc. 2017, 139, 15312-15315.
20
Yandulov, D. V.; Schrock, R. R. Studies relevant to catalytic reduction
41
of dinitrogen to ammonia by molybdenum triamidoamine complexes.
Pitman, C. L.; Finster, O. N. L.; Miller, A. J. M. Cyclopentadiene-
Inorg. Chem. 2005, 44, 1103-1117.
mediated hydride transfer from rhodium complexes. Chem. Commun.
2016, 52, 9105-9108.
21
Wickramasinghe, L. A.; Schrock, R. R.; Tsay, C.; Müller, P. Molyb-
42
denum complexes that contain a calix[6]azacryptand ligand as catalysts
Quintana, L. M. A.; Johnson, S. I.; Corona, S. L.; Villatoro, W.; God-
for reduction of N2 to ammonia. Inorg. Chem. 2018, 57, 15566-15574.
dard, W. A.; Takase, M. K.; VanderVelde, D. G.; Winkler, J. R.; Gray, H.
B.; Blakemore, J. D. Proton–hydride tautomerism in hydrogen evolution
catalysis. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 6409-6414.
22
Malischewski, M.; Seppelt, K.; Sutter, J.; Heinemann, F. W.; Dittrich,
B.; Meyer, K. Protonation of ferrocene: a low-temperature X-ray diffrac-
tion study of [Cp2FeH](PF6) reveals an iron-bound hydrido ligand. Angew.
Chem. Int. Ed. 2017, 56, 13372-13376.
43
Johnson, S. I.; Gray, H. B.; Blakemore, J. D.; Goddard, W. A. Role of
ligand protonation in dihydrogen evolution from a pentamethylcyclopen-
23 Hyde, J. S.; Pasenkiewicz-Gierula, M.; Jesmanowicz, A.; Antholine, W.
E. Pseudo field modulation in EPR spectroscopy. Appl. Magn. Reson.
1990, 1, 483-496.
tadienyl rhodium catalyst. Inorg. Chem. 2017, 56, 11375-11386.
44
Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R. A. Mn-,
Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem.
Rev. 2016, 116, 8912-9000.
24 Wittke, J. P.; Dicke, R. H. Redetermination of the hyperfine splitting in
the ground state of atomic hydrogen. Phys. Rev. 1956, 103, 620-631.
45
Gentry, E. C.; Knowles, R. R. Synthetic applications of proton-coupled
25
Hu, Y.; Shaw, A. P.; Estes, D. P.; Norton, J. R. Transition-metal hy-
electron transfer. Acc. Chem. Res. 2016, 49, 1546-1556.
dride radical cations. Chem. Rev. 2016, 116, 8427-8462.
46
Hartung, J.; Norton, J. R. Catalysis involving the H• transfer reactions
26
Brown, T. L. Cobalt-59 nuclear quadrupole resonance spectroscopy.
of first-row transition metals. In Catalysis without Precious Metals; Bull-
ock, R. M., Ed.; Wiley: 2010, p 1-21.
Acc. Chem. Res. 1974, 7, 408-415.
27
47 Cuerva, J. M.; Campaña, A. G.; Justicia, J.; Rosales, A.; Oller-López, J.
L.; Robles, R.; Cárdenas, D. J.; Buñuel, E.; Oltra, J. E. Water: the ideal
hydrogen-atom source in free-radical chemistry mediated by TiIII and
other single-electron-transfer metals? Angew. Chem. Int. Ed. 2006, 45,
5522-5526.
Different functionals (TPSS, TPSSH, BP86, B3LYP) were used for
both the optimization and also the single point calculation to determine the
hyperfine coupling. In all cases, similar T-tensors and the highly disparate
magnitude of the aiso for the endo- and exo-functionalized species were
observed (See SI for full details).
28 Harmer, J.; Finazzo, C.; Piskorski, R.; Ebner, S.; Duin, E. C.; Goenrich,
M.; Thauer, R. K.; Reiher, M.; Schweiger, A.; Hinderberger, D.; Jaun, B.
A nickel hydride complex in the active site of methyl-coenzyme M reduc-
tase: implications for the catalytic cycle. J. Am. Chem. Soc. 2008, 130,
10907-10920.
48
Chciuk, T. V.; Flowers, R. A. Proton-coupled electron transfer in the
reduction of arenes by SmI2–water complexes. J. Am. Chem. Soc. 2015,
137, 11526-11531.
49
Chciuk, T. V.; Anderson, W. R.; Flowers, R. A. Proton-coupled elec-
tron transfer in the reduction of carbonyls by samarium diiodide–water
complexes. J. Am. Chem. Soc. 2016, 138, 8738-8741.
29
Kinney, R. A.; Saouma, C. T.; Peters, J. C.; Hoffman, B. M. Modeling
the signatures of hydrides in metalloenzymes: ENDOR analysis of a di-
iron Fe(μ-NH)(μ-H)Fe Core. J. Am. Chem. Soc. 2012, 134, 12637-12647.
30 Green, M. L. H.; Pratt, L.; Wilkinson, G. 760. A new type of transition
50
Chciuk, T. V.; Anderson, W. R.; Flowers, R. A. Interplay between
substrate and proton donor coordination in reductions of carbonyls by
SmI2–water through proton-coupled electron-transfer. J. Am. Chem. Soc.
2018, 140, 15342-15352.
metal–cyclopentadiene compound. J. Chem. Soc. 1959, 3753-3767.
31 Potentials in butyronitrile have been shown to be very good estimates of
those in acetonitrile. Butyronitrile also enables low temperature electro-
chemistry to be performed, which is beneficial for this study: Izutsu, K.
Reference electrodes for use in nonaqueous solutions In Handbook of
Reference Electrodes; Inzelt, G., Lewenstam, A., Scholz, F., Eds.; Spring-
er Berlin Heidelberg: Berlin, Heidelberg, 2013, p 145-187.
51
Kolmar, S. S.; Mayer, J. M. SmI2(H2O)n reduction of electron rich
enamines by proton-coupled electron transfer. J. Am. Chem. Soc. 2017,
139, 10687-10692.
52
Koelle, U.; Khouzami, F.; Lueken, H. Permethylmetallocenes, III.
Decamethylnickelocene: the neutral sandwich complex, the monocation,
the dication, and their addition reactions. Chem. Ber. 1982, 115, 1178-
1196.
32
Koelle, U. Electrochemistry of transition metal π-complexes. IV. Oxi-
dation of cyclopentadienyl diolefine and cyclobutadiene cobalt complexes.
Inorg. Chim. Acta 1981, 47, 13-18.
33 Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R. M.; Miller,
A. J. M.; Appel, A. M. Thermodynamic hydricity of transition metal hy-
drides. Chem. Rev. 2016, 116, 8655-8692.
34 Ilic, S.; Alherz, A.; Musgrave, C. B.; Glusac, K. D. Thermodynamic and
kinetic hydricities of metal-free hydrides. Chem. Soc. Rev. 2018, 47, 2809-
2836.
35 Ohki, Y.; Murata, A.; Imada, M.; Tatsumi, K. C−H bond activation of
decamethylcobaltocene mediated by a nitrogenase Fe8S7 P-cluster model.
Inorg. Chem. 2009, 48, 4271-4273.
ACS Paragon Plus Environment