4 H. Bönnemann, Angew. Chem., 1985, 97, 264–279 (Angew. Chem., Int.
Ed. Engl., 1985, 24, 248–262).
actions, somewhat smaller. In addition, a temperature of 60 °C
was necessary for conversion. Thus, cyclotrimerization of
2,5-dimethyl-3-hexyne gave hexaisopropylbenzene (5) in 51%
yield, and the reaction of diphenylethyne resulted in a 47% yield
of hexaphenylbenzene (6).
5 K. P. C. Vollhardt, Angew. Chem., 1984, 96, 525–541 (Angew. Chem.,
Int. Ed. Engl., 1984, 23, 539–556).
6 K. P. C. Vollhardt, Acc. Chem. Res., 1977, 10, 1–8.
7 T. Sugihara, A. Wakabayashi, Y. Nagai, H. Takao, H. Imagawa and N.
Nishizawa, Chem. Commun., 2002, 576–577.
8 B. Heller and G. Oehme, J. Chem. Soc., Chem. Commun., 1995,
179–180.
9 B. Heller, D. Heller, P. Wagler and G. Oehme, J. Mol. Catal. A: Chem.,
1998, 136, 219–233.
10 B. Heller, Nachr. Chem. Tech. Lab., 1999, 47, 9–14.
11 B. Heller, D. Heller and G. Oehme, EPA Newsl., 1998, 37–50.
12 B. Heller, J. Reihsig, W. Schulz and G. Oehme, Appl. Organomet.
Chem., 1993, 7, 641–646.
13 F. Karabet, B. Heller, K. Kortus and G. Oehme, Appl. Organomet.
Chem., 1995, 9, 651–656.
14 B. Heller, B. Sundermann, H. Buschmann, H.-J. Drexler, J. You, U.
Holzgrabe, E. Heller and G. Oehme, J. Org. Chem., 2002, 67,
4414–4422.
15 H. Borwieck, O. Walter, E. Dinjus and J. Rebizant, J. Organomet.
Chem., 1998, 570, 121–127.
16 K. S. Jerome and E. J. Parsons, Organometallics, 1993, 12,
2991–2993.
17 B. Eaton and M. S. Sigman USPat., 5,760,266, 13.3.1997.
18 M. S. Sigman, A. W. Fatland and B. E. Eaton, J. Am. Chem. Soc., 1998,
120, 5130–5131.
19 A. W. Fatland and B. E. Eaton, Org. Lett., 2000, 2, 3131–3133.
20 H. Butenschön, Chem. Rev., 2000, 100, 1527–1564.
21 J. Foerstner, A. Kakoschke, R. Goddard, J. Rust, R. Wartchow and H.
Butenschön, J. Organomet. Chem., 2001, 617/618, 412–422.
22 J. Foerstner, A. Kakoschke, R. Wartchow and H. Butenschön,
Organometallics, 2000, 19, 2108–2113.
23 J. Foerstner, R. Wartchow and H. Butenschön, New J. Chem., 1998,
1155–1157.
24 J. Foerstner, A. Kakoschke, D. Stellfeldt, H. Butenschön and R.
Wartchow, Organometallics, 1998, 17, 893–896.
25 J. Foerstner, S. Kozhushkov, P. Binger, P. Wedemann, M. Noltemeyer,
A. de Meijere and H. Butenschön, Chem. Commun., 1998, 239–240.
26 J. Foerstner, F. Olbrich and H. Butenschön, Angew. Chem., 1996, 108,
1323–1325 (Angew. Chem., Int. Ed. Engl., 1996, 35, 1234–1237).
27 J. Foerstner, R. Kettenbach, R. Goddard and H. Butenschön, Chem.
Ber., 1996, 129, 319–325.
Next, some co-cyclization experiments were performed, in
which 1,7-octadiyne was treated with phenylethyne and with
ethyl propionate. Under the usual reaction conditions30 7 and 8
were formed in 44% and 40% yield, respectively. As the co-
cyclization of alkynes and nitriles has been used for the
synthesis of pyridines, 1,7-octadiyne was then treated with
acetonitrile giving tetrahydroisoquinoline 9 in 64% yield.
A closer examination of the reaction revealed that the
reaction mixture is not homogeneous. Upon stirring after
addition of the alkyne and the catalyst apparently an emulsion is
formed, the reaction presumably taking place in the micelles.
Upon alkyne consumption the formed cyclization product
precipitates from the mixture.
We have shown that cobalt chelate 1 serves as a catalyst for
the alkyne trimerization in water/ethanol (80+20) at room
temperature. The use of this medium has obvious advantages
over usual organic solvents in terms of organic solvent
consumption, waste disposal and safety issues.
This work was kindly supported by the Deutsche For-
schungsgemeinschaft and the Fonds der Chemischen Industrie
as well as by the Innovations offensive ‘Biologisch aktive
Naturstoffe: Synthetische Diversität’.
28 R. T. Kettenbach, W. Bonrath and H. Butenschön, Chem. Ber., 1993,
126, 1657–1669.
29 R. T. Kettenbach, C. Krüger and H. Butenschön, Angew. Chem., 1992,
104, 1052–1054 (Angew. Chem., Int. Ed. Engl., 1992, 31,
1066–1068).
30 Typical experimental procedure: To a 20 mL Schlenk flask, 16.2 mg
(0.05 mmol) of ethene cobalt complex 1, 102 mg (0.11 ml, 1.00 mmol)
of phenylactylene (2a) and 5 ml of degassed water/ethanol (80+20) was
added under argon. The reaction mixture was stirred at room
temperature (25 °C) for 7 h. Then the reaction mixture was extracted
with petroleum ether (3 3 20 mL). The combined organic layers were
dried (MgSO4), filtered, and concentrated in vacuo. The residue was
purified by flash column chromatography (petroleum ether/ethyl acetate
40+1) and gave 86 mg (28.1 mmol, 84%) of 3a/4a.
Notes and references
1 S. Saito and Y. Yamamoto, Chem. Rev., 2000, 100, 2901.
2 A. J. Fletcher and S. D. R. Christie, J. Chem. Soc., Perkin Trans. 1,
2000, 1657–1668.
3 D. B. Grotjahn, in ‘Transition Metal Alkyne Complexes: Transition
Metal-catalyzed Cyclotrimerization’, ed. E. W. Abel, F. G. A. Stone, G.
Wilkinson and L. S. Hegedus, Oxford, 1995.
CHEM. COMMUN., 2002, 2852–2853
2853