C O M M U N I C A T I O N S
Figure 3. NMR structures of the cis-SAA peptides 4-6 as a bundle of the
10 lowest-energy structures calculated from restrained MD simulations: (a)
tetramer 4, side view; (b) hexamer 5, top view from C-terminus; and (c)
octamer 6, side view. For the sake of clarity acetanilide groups in 5 and 6
are not shown.
Figure 2. Schematic view of the hydrogen bonding (dashed arrows) and
NOEs (dark arrows) of NHi- -CâHi+2 and NHi- -CâHi+3 that characterize
the 14-helix.
defined medicinal properties makes these molecules useful in
pharmaceutical applications. Work is in progress in this direction.
3
Large values (8.0-10.8 Hz) of JNH-CâH in 4-6 correspond to
an antiperiplanar arrangement between these protons and also
indicates the presence of a secondary structure in solution. NOESY
data of 4-6 revealed several medium and long-range backbone
NOEs between NHi f CâHi+2 and NHi f CâHi+3 (shown in Figure
2), which are distinctive for the 14-helix. For the tetramer 4, the
two possible NOE signals between NHi f CâHi+2 are well resolved,
while the assignment of NHi f CâHi+3 (i ) 1), NOE signal is
obscured due to resonance overlap. Nevertheless, despite the overlap
of several resonances, the characteristic NOEs that represent a 14-
helix are more pronounced for hexamer 5 and octamer 6. In the
case of 5, all four expected NHi f CâHi+2 NOEs are observed and
two out of three NHi f CâHi+3 NOEs are assigned without
ambiguity. Similarly four out of six NHi f CâHi+2 and three out
of five NHi f CâHi+3 NOEs are clearly distinguished for 6.
Furthermore, formation of 14-membered NHi f COi+3 hydrogen
bonds in all the peptides has been confirmed by individual titration
studies.14 Two, four, and six hydrogen bonds are formed in 4, 5,
and 6, respectively, which are shown schematically in Figure 2.
For all the peptides studied the hydrogen bonds of the 14-helix
begin from the first residue. The exceptional stability and organiza-
tion of the 14-helix observed in tetramer 4 are more pronounced
in the hexamer 5 and octamer 6.
Acknowledgment. M.S.R. is thankful to CSIR, New Delhi; A.P.
and M.H.V.R.R. acknowledge IICT for financial support. This work
is dedicated to the memory of Dr. A. K. Singh.
Supporting Information Available: Synthesis, NMR, and distance
constraints used for the MD calculations. This material is available
References
(1) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
(2) (a) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015. (b) Seebach,
D.; Overhand, M.; Kuhnle, F. N. M; Martinoni, B.; Oberer, L.; Hommel,
U.; Widmer, H. HelV. Chim. Acta 1996, 79, 913. (c) Seebach, D.; Abele,
S.; Gademann, K.; Guichard, G.; Hintermann, T.; Jaun, B.; Mathews, J.
L.; Schreiber, J. V.; Oberer, L.; Hommel, V.; Widmer, H. HelV. Chim.
Acta 1998, 81, 932.
(3) (a) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. ReV. 2001, 101,
3219. (b) Appella, D. H.; Christianson, L. A.; Klein, D. A.; Powell, D.
R.; Huang, X.; Barchi, J. J., Jr.; Gellman, S. H. Nature (London) 1997,
387, 381. (c) Applequist, J.; Bode, K. A.; Appella, D. H.; Christianson,
L. A.; Gellman, S. H. J. Am. Chem. Soc. 1998, 120, 4891.
(4) (a) Wu, Y.-D.; Wang, D.-P. J. Am. Chem. Soc. 1998, 120, 13485. (b)
Mohle, K.; Gunther, R.; Thormann, M.; Sewald, N.; Hofmann, H.-J.
Biopolymers 1999, 50, 167.
(5) Sharma, G. V. M.; Ravinder Reddy, K.; Radha Krisha, P.; Ravi Sankar,
A.; Narsimlu, K.; Kiran Kumar, S.; Jayaprakash, P.; Jagannadh, B.;
Kunwar, A. C. J. Am. Chem. Soc. 2003, 125, 13670.
(6) Gruner, S. A. W.; Truffault, V.; Voll, G.; Locardi, E.; Stockle, M.; Kessler.
H. Chem.sEur. J. 2002, 8, 4366.
(7) Banerjee, A.; Balaram, P. Curr. Sci. 1997, 73, 106.
(8) (a) Gruner, S.; Keri, G.; Schwab, R.; Venetianer, A.; Kessler, H. Org.
Lett. 2001, 3, 3723. (b) Dalcanale, E.; Montanari, F.; J. Org. Chem. 1986,
51, 567. (c) Saito, S.; Nakajima, H.; Inaba, M.; Moriwake, T. Tetrahedron
Lett. 1989, 30, 837.
(9) Austin, G. N.; Baird, P. D.; Fleet, G. W. J.; Peach, J. M.; Smith, P. W.;
Watkin, D. J. Tetrahedron 1987, 43, 3095.
(10) Nozaki, S.; Muramatsu, I. Bull. Chem. Soc. Jpn. 1982, 55, 2165.
(11) For details, please see Supporting Information.
(12) Seebach, D.; Ciceri, P. E.; Overhand, M.; Jaun, B.; Rigo, D.; Oberer, L.;
Hommel, U.; Amstutz, R.; Widmer, H. HelV. Chim. Acta 1996, 79, 2043.
(13) Haasnoot, C. A. G.; de Leeuw, F. A. A. M.; de Leeuw, H. P. M.; Altona,
C. Org. Magn. Reson. 1981, 15, 43.
(14) The solvent titration was carried out by sequentially adding up to 33% of
DMSO-d6 to CDCl3 solutions of the peptides.
The restrained MD calculations11 for 4-6 very clearly bring out
the salient features. The distance restraints were obtained from the
ROESY spectra by using the volume integrals and two-spin
approximation. Figure 3 depicts the superimposition of the 10
lowest-energy structures of the peptides 4-6. They are representa-
tive of the ordered structures in solution. The NMR structures of
4-6 show the 14-helix with the pitch of ∼5 Å and three residues
per turn. Fraying is seen at the C-terminus end of 4-6 consistent
3
with the NMR experiment (decrease in the value of JCRH-CâH ).
In summary, this study shows that the furanoid cis-â-sugar amino
acid oligomer adopts in solution a well-defined right-handed 14-
helix. Functionalization of the conformationally rigid oligomers with
JA0467667
9
J. AM. CHEM. SOC. VOL. 126, NO. 42, 2004 13587