RSC Advances
Paper
12 M. J. Robb, B. Newton, B. P. Fors and C. J. Hawker, J. Org.
Chem., 2014, 79, 6360–6365.
4 Conclusions
´
´
13 A. J. Jimenez, M. J. Lin, C. Burschka, J. Becker, V. Settels,
In summary, a novel composite material, perylene carboxylate-
modied inorganic TiO gel, has been prepared for sensitive
and portable AA detection. By adjusting the reaction condi-
tions, a strongly emitting PI–TiO gel can be obtained. During
the detection process, inorganic TiO gel is not only used as
a wet medium, but more importantly as a uorescent
quenching agent for the detection of AA. The lm prepared on
glass substrate can be applied as a simple visual colour and
uorescence double sensor for AA detection. Furthermore, the
sensing principle and selectivity are carefully discussed and
are ascribed to the strong coordination between phenolic
hydroxyl groups and Ti(IV). The portable ability of the sensor
also has potential for human application in future point-of-
care testing.
¨
B. Engels and F. Wurthner, Chem. Sci., 2014, 5, 608–619.
14 Y. Avlasevich, C. Li and K. Mullen, J. Mater. Chem., 2010, 20,
¨
3814–3826.
15 W. X. Liu, Z. G. Suo, Y. H. Liu, L. Y. Feng, B. B. Zhang,
F. F. Xing and S. R. Zhu, Aust. J. Chem., 2019, 72, 206–
212.
16 S. J. Padayatty, A. Katz and Y. H. Wang, J. Am. Coll. Nutr.,
2003, 22, 18–35.
ˇ
´
´
´
17 R. Kandar, P. Drabkova and R. Hampl, J. Chromatogr. B: Anal.
Technol. Biomed. Life Sci., 2011, 879, 2834–2839.
18 Y. Ma, M. G. Zhao, B. Cai, W. Wang, Z. Z. Ye and J. Y. Huang,
Biosens. Bioelectron., 2014, 59, 384–388.
19 S. Z. Qureshi, A. Saeed, S. Haque and M. A. Khan, Talanta,
1991, 38, 637–639.
20 A. Khan, M. I. Khan, Z. Iqbal, Y. Shah, L. Ahmad, S. Nazir,
D. G. Watson, J. A. Khan, F. Nasir, A. Khan and Ismail,
Talanta, 2011, 84, 789–801.
21 X. Zhang, Y. C. Zhang and L. X. Ma, Sens. Actuators, B, 2016,
227, 488–496.
Conflicts of interest
The authors declare no competing nancial interest.
22 C. Q. Wang, J. Du, H. W. Wang, C. E. Zou, F. X. Jiang, P. Yang
and Y. K. Du, Sens. Actuators, B, 2014, 204, 302–309.
23 J. Peng, J. Ling, X. Q. Zhang, L. Y. Zhang, Q. E. Cao and
Z. T. Ding, Sens. Actuators, B, 2015, 221, 708–716.
24 P. K. Sukul, D. Asthana, P. Mukhopadhyay, D. Summa,
L. Muccioli, C. Zannoni, D. Beljonne, A. E. Rowan and
S. Malik, Chem. Commun., 2011, 47, 11858–11860.
25 F. Rigodanza, E. Tenori, A. Bonasera, Z. Syrgiannis and
M. Prato, Eur. J. Org. Chem., 2015, 23, 5060–5063.
26 Y. Y. Wu, W. Luo, Y. H. Wang, Y. Y. Pu, X. Zhang, L. S. You,
Q. Y. Zhu and J. Dai, Inorg. Chem., 2012, 51, 8982–
8988.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (NSFC 21705106), the Program for
Professor of Special Appointment (Eastern Scholar) at Shanghai
Institutions of Higher Learning (No. TP2016023), Shanghai
Sailing Program (17YF1405700) and Shanghai Natural Science
Foundation (No. 18ZR1415400).
References
1 F. Y. Li, C. Y. Wang and W. W. Guo, Adv. Funct. Mater., 2018,
28, 1705876.
2 Y. Y. Hu, M. X. Xu, Y. R. Liu, X. Y. Xie, W. D. Bao, A. X. Song
and J. C. Hao, J. Mater. Chem. A, 2017, 5, 1174–1181.
3 K. Q. Fan, X. B. Wang, Z. G. Yin, C. J. Jia, B. H. Zhang,
27 L. Rozes and C. Sanchez, Chem. Soc. Rev., 2011, 40, 1006–
1030.
28 W. S. Tung and W. A. Daoud, ACS Appl. Mater. Interfaces,
2009, 1, 2453–2461.
L. M. Zhou and J. Song, J. Mater. Chem. C, 2018, 6, 10192– 29 J. J. Han, A. D. Shaller, W. Wang and A. D. Q. Li, J. Am. Chem.
10196. Soc., 2008, 130, 6974–6982.
4 P. Yang, H. S. Chen, J. P. Wang, Q. D. Che, Q. Ma, Y. Q. Cao 30 F. Schlosser, M. Moos, C. Lambert and F. Wurthner, Adv.
and Y. N. Zhu, RSC Adv., 2014, 4, 20358–20363.
Mater., 2013, 25, 410–414.
5 F. Ayari, M. Mhamdi, G. Delahay and A. Ghorbel, J. Porous 31 Q. L. Zhang, L. C. Du, Y. X. Weng, L. Wang, H. Y. Chen and
Mater., 2010, 17, 265–274.
J. Q. Li, J. Phys. Chem. B, 2004, 108, 15077–15083.
6 N. Mizoshita, T. Tani and S. Inagaki, Adv. Mater., 2012, 24, 32 P. Taheri, J. R. Flores, F. Hannour, J. H. W. D. Wit, H. Terryn
3350–3355. and J. M. C. Mol, J. Phys. Chem. C, 2013, 117, 3374–3382.
7 M. Schneider and K. Mullen, Chem. Mater., 2000, 12, 352– 33 N. Sikdar, D. Dutta, R. Haldar, T. Ray, A. Hazra,
¨
¨
362.
A. J. Bhattacharyya and T. K. Maji, J. Phys. Chem. C, 2016,
120, 13622–13629.
34 Z. M. Cheng, F. F. Xing, Y. L. Bai, Y. M. Zhao and S. R. Zhu,
Asian J. Org. Chem., 2017, 6, 1612–1619.
35 A. P. Xagas, M. C. Bernard, A. H. Goff, N. Spyrellis, Z. Loizos
and P. Falaras, J. Photochem. Photobiol., A, 2000, 132, 115–
120.
8 P. Wang, Y. Y. Wu, J. Wu, S. Wang, L. Yu, Q. Y. Zhu and J. Dai,
J. Mater. Chem. C, 2013, 1, 7973–7978.
9 S. Y. Gan, L. J. Zhong, L. F. Gao, D. X. Han and L. Niu, J. Am.
Chem. Soc., 2016, 138, 1490–1493.
10 B. Wang and C. Yu, Angew. Chem., Int. Ed., 2010, 49, 1485–
1488.
11 S. H. Bai, L. L. Liang, C. L. Wang, H. F. Mehnane, C. H. Bu, 36 W. Jabs, W. Gaube, C. Fehl and R. Lukowski, Inorg. Chim.
S. J. You, Z. H. Yu, N. Cheng, H. Hu, W. Liu, S. S. Guo and
Acta, 1990, 175, 273.
X. Z. Zhao, J. Power Sources, 2015, 280, 430–434.
24644 | RSC Adv., 2019, 9, 24638–24645
This journal is © The Royal Society of Chemistry 2019