E
M. Zhao et al.
Letter
Synlett
(4) Sorbera, L. A.; Serradell, N.; Bolos, J. Drugs Fut. 2007, 32, 12.
(5) Yamaguchi, M.; Yasueda, S. I.; Isowaki, A.; Yamamoto, M.;
Kimura, M.; Inada, K.; Ohtori, A. Int. J. Pharm. 2005, 301, 121.
(6) For selected examples, see: (a) Fukuzumi, T.; Shibata, N.;
Sugiura, M.; Yasui, H.; Nakamura, S.; Toru, T. Angew. Chem. Int.
Ed. 2006, 118, 5095. (b) Bélanger, É.; Cantin, K.; Messe, O.;
Tremblay, M.; Paquin, J. F. J. Am. Chem. Soc. 2007, 129, 1034.
(7) FBSM was reported by Shibata and Hu, respectively, in 2006, see
ref. 6a and: Ni, C.; Li, Y.; Hu, J. J. Org. Chem. 2006, 71, 6829.
(8) (a) Buchannan, R. L.; Pattison, F. L. M. Can. J. Chem. 1965, 43,
3466. (b) Harsanyi, A.; Sandford, G. Org. Process Res. Dev. 2014,
18, 981.
(16) (a) Mariz, R.; Luan, X.; Gatti, M.; Linden, A.; Dorta, R. J. Am.
Chem. Soc. 2008, 130, 2172. (b) Bürgi, J. J.; Mariz, R.; Gatti, M.;
Drinkel, E.; Luan, X.; Blumentritt, S.; Linden, A.; Dorta, R. Angew.
Chem. Int. Ed. 2009, 48, 2768.
(17) (a) Chen, J.; Lang, F.; Li, D.; Cun, L.; Zhu, L.; Deng, J.; Liao, J. Tetra-
hedron: Asymmetry 2009, 20, 1953. (b) Liu, J.; Chen, G.; Jing, X.;
Liao, J. Tetrahedron: Asymmetry 2011, 22, 575. (c) Du, L.; Cao, P.;
Xing, J.; Lou, Y.; Jiang, L.; Li, L.; Liao, J. Angew. Chem. Int. Ed.
2013, 52, 4207.
(18) (a) Jin, S. S.; Wang, H.; Xu, M. H. Chem. Commun. 2011, 7230.
(b) Jin, S. S.; Wang, H.; Zhu, T. S.; Xu, M. H. Org. Biomol. Chem.
2012, 10, 1764.
(9) For the use of 2-fluoromalonate in Pd-catalyzed asymmetrical
allylations, see: (a) Kawasaki, T.; Kitazume, T. Isr. J. Chem. 1999,
39, 129. (b) Jiang, B.; Huang, Z. G.; Cheng, K. J. Tetrahedron:
Asymmetry 2006, 17, 942. (c) Shibatomi, K.; Muto, T.;
Sumilkawa, Y.; Narayama, A.; Iwasa, S. Synlett 2009, 241. (d) For
the use of FBSM in Pd-catalyzed asymmetrical allylations of
symmetric di-substituted allylic substrates, see: Zhao, X.; Liu,
D.; Zheng, S.; Gao, N. Tetrahedron Lett. 2011, 52, 665.
(10) (a) Liu, W. B.; Zheng, S. C.; He, H.; Zhao, X. M.; Dai, L. X.; You, S.
L. Chem. Commun. 2009, 6604. (b) Zhang, H.; Chen, J.; Zhao, X.
M. Org. Biomol. Chem. 2016, 14, 7183.
(11) Zhu, F.; Xu, P. W.; Zhou, F.; Wang, C. H.; Zhou, J. Org. Lett. 2015,
17, 972.
(19) Feng, X.; Wang, Y.; Wei, B.; Yang, J.; Du, H. Org. Lett. 2011, 13,
3300.
(20) Chen, Q.; Chen, C.; Guo, F.; Xia, W. Chem. Commun. 2013, 6433.
(21) (a) Gao, N.; Zhao, X. M.; Cai, C. S.; Cai, J. W. Org. Biomol. Chem.
2015, 13, 9551. (b) Zhang, M.; Zhao, M. Z.; Zheng, P. R.; Zhang,
H. B.; Zhao, X. M. J. Fluorine Chem. 2016, 189, 13.
(22) Typical Procedure for the Synthesis of (R)-L1
To a solution of salicylic acid (1.0 mmol) in THF (2.0 mL) was
added 1,1′-carbonyldiimidazole (CDI; 1.0 mmol, 1.0 equiv)
slowly at room temperature, then the reaction mixture was
heated to 50 °C for 1.0 h. The solution was cooled to room tem-
perature and concentrated to give the active amide. To a sus-
pension of KH (30% in oil, 2.0 mmol, 2.0 equiv) in THF (5.0 mL)
was added (R)-tert-butanesulfinamide (1.0 mmol) under argon
at room temperature and the mixture was stirred for 0.5 h. The
active amide was added and the mixture was stirred at 50 °C for
1.0 h. The reaction mixture was cooled to room temperature
and acidified with aqueous HCl to pH >7, then the mixture was
diluted with EtOAc (10 mL), washed with H2O (3 × 10 mL) and
brine (10 mL), dried over anhydrous Na2SO4, filtered, and con-
centrated under vacuum. The residue was purified by column
chromatography on silica gel (EtOAc) to give the desired
product (R)-L1 (149.4 mg, 62% yield) as a white solid; mp
144.6–145.9 °C; [α]D25 –73.8 (c = 1.0, MeOH). 1H NMR (400 MHz,
CDCl3): δ = 7.78 (d, J = 7.8 Hz, 1 H), 7.39 (t, J = 7.4 Hz, 1 H), 7.01
(d, J = 8.1 Hz, 1 H), 6.88 (t, J = 7.5 Hz, 1 H), 1.36 (s, 9 H). 13C NMR
(100 MHz, CDCl3): δ = 168.94, 159.16, 135.22, 129.55, 119.79,
118.01, 115.40, 57.05, 22.26. IR (KBr): 3259, 2963, 2930, 2854,
(12) (a) Han, X.; Kwiatkowski, J.; Xue, F.; Huang, K. W.; Lu, Y. Angew.
Chem. Int. Ed. 2009, 121, 7740. (b) Li, H.; Zu, L.; Xie, H.; Wang,
W. Synthesis 2009, 1525. (c) Yang, W.; Wei, X.; Pan, Y.; Lee, R.;
Zhu, B.; Liu, H.; Yan, L.; Huang, K. W.; Jiang, Z.; Tan, C. H. Chem.
Eur. J. 2011, 17, 8066. (d) Furukawa, T.; Kawazoe, J.; Zhang, W.;
Nishimine, T.; Tokunaga, E.; Matsumoto, T.; Shiro, M.; Shibata,
N. Angew. Chem. Int. Ed. 2011, 50, 9684. (e) Companyó, X.;
Valero, G.; Ceban, V.; Calvet, T.; Font-Bardia, M.; Moyano, A.;
Rios, R. Org. Biomol. Chem. 2011, 9, 7986. (f) Wang, B.;
Companyó, X.; Li, J.; Moyano, A.; Rios, R. Tetrahedron Lett. 2012,
53, 4124. (g) Cosimi, E.; Engl, O. D.; Saadi, J.; Ebert, M. O.;
Wennemers, H. Angew. Chem. Int. Ed. 2016, 55, 13127.
(13) For recent reviews, see: (a) Trost, B. M.; Van Vranken, D. L. Chem.
Rev. 1996, 96, 395. (b) Johannsen, M.; Jørgensen, K. A. Chem. Rev.
1998, 98, 1689. (c) Hayashi, T. J. Organomet. Chem. 1999, 576,
195. (d) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336.
(e) Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Acc. Chem.
Res. 2003, 36, 659. (f) Trost, B. M.; Crawley, M. L. Chem. Rev.
2003, 103, 2921. (g) Trost, B. M. J. Org. Chem. 2004, 69, 5813.
(h) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res.
2006, 39, 747. (i) Lu, Z.; Ma, S. Angew. Chem. Int. Ed. 2008, 47,
258. (j) Dieguez, M.; Pamies, O. Acc. Chem. Res. 2010, 43, 312.
(k) He, H.; Ye, K. Y.; Wu, Q. F.; Dai, L. X.; You, S. L. Adv. Synth.
Catal. 2012, 354, 1084. (l) Liu, W. B.; Xia, J. B.; You, S. L. Top.
Organomet. Chem. 2012, 38, 155.
(14) For selected papers and reviews, see: (a) Glorius, F. Angew.
Chem. Int. Ed. 2004, 43, 3364. (b) Defieber, C.; Grützmacher, H.;
Carreira, E. M. Angew. Chem. Int. Ed. 2008, 47, 4482. (c) Hayashi,
T. Aldrichimica Acta 2009, 42, 31. (d) Feng, C. G.; Xu, M. H.; Lin,
G. Q. Synlett 2011, 1345.
(15) For selected reviews, see: (a) Carreño, M. C. Chem. Rev. 1995, 95,
1717. (b) Fernández, I.; Khiar, N. Chem. Rev. 2003, 103, 3651.
(c) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010,
110, 3600. (d) Sipos, G.; Drinkel, E. E.; Dorta, R. Chem. Soc. Rev.
2015, 44, 3834. (e) Trost, B. M.; Rao, M. Angew. Chem. Int. Ed.
2015, 54, 5026.
1677, 1605, 1464, 1408, 1393, 1304, 1232, 1107, 1032 cm–1
.
HRMS (ESI-TOF): m/z [M + H]+ calcd for C11H16NO3S: 242.0845;
found: 242.0841
(23) CCDC-1499293, (R)-L1, contains the supplementary crystallo-
graphic data for this paper. The data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
(24) Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.;
Taketomi, T.; Noyori, R. J. Org. Chem. 1986, 51, 629.
(25) Abbenhius, H. C. L.; Burckhardt, U.; Gramlich, V.; Kollner, C.;
Pregosin, P. S.; Salzman, R.; Togni, A. Organometallics 1995, 14,
759.
(26) Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992,
114, 9327.
(27) Typical Procedure for Pd-Catalyzed Allylic Alkylation Reac-
tion
[Pd(C3H5)Cl]2 (0.004 mmol, 4 mol%), (R)-L1 (0.008 mmol, 8
mol%), and (E)-1,3-disubstituted allyl acetate 1 (0.1 mmol) were
dissolved in THF/dioxane (2.0 mL, 1:1) in a dry Schlenk tube
filled with argon. The reaction mixture was stirred for 30 min at
room temperature, then ethyl 2-fluoroacetoacetate (2a; 0.3
mmol, 3.0 equiv) and K3PO4 (0.3 mmol, 3.0 equiv) were added.
The reaction mixture was stirred at room temperature and the
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–F