Journal of the American Chemical Society
Article
Goetzinger, A.; Kohlhepp, S. V.; Gulder, T. Chem. Commun. 2014, 50,
3435.
wider range of HalA values in comparison to epoxides or
alcohols where the attached substituents can only exert a
weaker inductive effect. A comparison of halenium affinities can
(a) facilitate rational selection of compatible nucleophiles
(especially when the nucleophilic atom is embedded within
motifs that have similar steric/electronic profiles); (b) account
for the modulation of HalA values of alkenes by the anchimeric
assistance of neighboring functionalities (this aspect under-
scores the importance of quantitatively evaluating HalA values
on full structures rather than on truncated models; furthermore,
subtle electronic perturbations leading to modulations of HalA
values are also accounted for in the calculations); and (c)
accurately predict chemoselectivity, aiding in the development
of halenium initiated cascade/Domino reactions.
These studies highlight the HalA scale’s use as a design/
predictive tool in a field heretofore dependent on trial-and-
error approaches for reaction discovery. Like the pKa scale,
halenium affinity is a thermodynamic quantity and may not
work to predict kinetically determined reaction outcomes. For
such problems, more complete structural and energetic analyses
of reaction paths and transition states26 would be necessary.
The scope of “affinity tools”, such as HalA, that broadly
predict reaction chemoselectivities is certainly not limited
exclusively to alkene halogenation reactions. Any electrophilic
species (such as sulfenium, selenium, oxenium ions) capable of
activating Lewis basic functionalities (such as olefins, alkynes,
allenes, amines, etc.) can be efficiently parametrized on a similar
scale to expedite the development of electrophilic functional-
ization reactions in general. These studies are ongoing and will
be the subject of future disclosures.
(2) (a) Murphy, C. D. J. Appl. Microbiol. 2003, 94, 539. (b) Neumann,
C. S.; Fujimori, D. G.; Walsh, C. T. Chem. Biol. 2008, 15, 99.
(3) (a) Hiegel, G. A.; Nalbandy, M. Synth. Commun. 1992, 22, 1589.
(b) van Summeren, R. P.; Romaniuk, A.; Ijpeij, E. G.; Alsters, P. L.
Catal. Sci. Technol. 2012, 2, 2052.
(4) (a) Hasty, S. J.; Demchenko, A. V. Chem. Heterocycl. Compd.
2012, 48, 220. (b) Girard, N.; Rousseau, C.; Martin, O. R. Tetrahedron
Lett. 2003, 44, 8971. (c) Fraser-Reid, B.; Lopez, C. J.; Gammon, D.
W.; Sels, B. F. In Handbook of Chemical Glycosylation: Advances in
Stereoselectivity and Therapeutic Relevance; Demchenko, A. V., Ed.;
Wiley: 2008; p 381.
(5) (a) In Halogen Bonding: Fundamentals and Applications;
Metrangolo, P., Resnati, G., Eds.; Springer-Verlag Berlin: Berlin,
2008; Vol. 126, p 1. (b) Chen, G.; Ma, S. Angew. Chem., Int. Ed. 2010,
49, 8306. (c) Castellanos, A.; Fletcher, S. P. Chem.Eur. J. 2011, 17,
5766. (d) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Angew. Chem.,
Int. Ed. 2012, 51, 10938. (e) Hennecke, U. Chem.Asian J. 2012, 7,
456. (f) Mendoza, A.; Fananas, F. J.; Rodriguez, F. Curr. Org. Synth.
2013, 10, 384. (g) Murai, K.; Fujioka, H. Heterocycles 2013, 87, 763.
(h) Tan, C. K.; Yeung, Y.-Y. Chem. Commun. 2013, 49, 7985. (i) Chen,
J.; Zhou, L. Synthesis 2014, 46, 586. (j) Zheng, S.; Schienebeck, C. M.;
Zhang, W.; Wang, H.-Y.; Tang, W. Asian J. Org. Chem. 2014, 3, 366.
(6) (a) Ojima, I. Catalytic asymmetric synthesis, 2nd ed.; Wiley-VCH:
New York, 2000. (b) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247.
(7) (a) Denmark, S. E.; Burk, M. T.; Hoover, A. J. J. Am. Chem. Soc.
2010, 132, 1232. (b) McManus, S. P.; Peterson, P. E. Tetrahedron Lett.
1975, 2753. (c) Ohta, B. K.; Hough, R. E.; Schubert, J. W. Org. Lett.
2007, 9, 2317. (d) Olah, G. A.; Bollinge, J. M. J. Am. Chem. Soc. 1968,
90, 947. (e) Olah, G. A.; Bollinge, J. M.; Brinich, J. J. Am. Chem. Soc.
1968, 90, 6988. (f) Olah, G. A.; Peterson, P. E. J. Am. Chem. Soc. 1968,
90, 4675. (g) Olah, G. A.; Westerma, P. W.; Melby, E. G.; Mo, Y. K. J.
Am. Chem. Soc. 1974, 96, 3565. (h) Solling, T. I.; Radom, L. Int. J.
Mass Spectrom. 1999, 185, 263.
(8) (a) Garzan, A.; Jaganathan, A.; Marzijarani, N. S.; Yousefi, R.;
Whitehead, D. C.; Jackson, J. E.; Borhan, B. Chem.Eur. J. 2013, 19,
9015. (b) Jaganathan, A.; Garzan, A.; Whitehead, D. C.; Staples, R. J.;
Borhan, B. Angew. Chem., Int. Ed. 2011, 50, 2593. (c) Jaganathan, A.;
Staples, R. J.; Borhan, B. J. Am. Chem. Soc. 2013, 135, 14806.
(d) Whitehead, D. C.; Fhaner, M.; Borhan, B. Tetrahedron Lett. 2011,
52, 2288. (e) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B.
J. Am. Chem. Soc. 2010, 132, 3298.
(9) (a) Yousefi, R.; Ashtekar, K. D.; Whitehead, D. C.; Jackson, J. E.;
Borhan, B. J. Am. Chem. Soc. 2013, 135, 14524. (b) Yousefi, R.;
Whitehead, D. C.; Mueller, J. M.; Staples, R. J.; Borhan, B. Org. Lett.
2011, 13, 608.
(10) (a) Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys.
1993, 98, 1293. (b) Delbene, J. E. J. Phys. Chem. 1993, 97, 107.
(c) Smith, B. J.; Radom, L. J. Am. Chem. Soc. 1993, 115, 4885.
(11) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D.
J. Chem. Phys. 1993, 98, 1372. (c) Becke, A. D. J. Chem. Phys. 1993, 98,
5648. (d) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28,
213. (e) Hehre, W. J.; Ditchfeld, R.; Pople, J. A. J. Chem. Phys. 1972,
56, 2257. (f) Marenich, A. V.; Olson, R. M.; Kelly, C. P.; Cramer, C. J.;
Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2011. (g) Stephens, P.
J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994,
98, 11623. (h) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (i)
Spartan ’10. Wavefunction, Inc.: Irvine, CA, 2010.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details, HalA calculations, characterization data,
DFT computational data, and MS Office Excel template for
HalA calculations. This material is available free of charge via
AUTHOR INFORMATION
■
Corresponding Authors
Author Contributions
‡These authors contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Generous support was provided in part by the NIH
(GM110525) and the NSF (CHE-1362812). The authors
acknowledge the help of Edward Toma, Christopher Rahn,
Aaron Schmidt, Thomas Chen, Ashley Burkin, and Meghan
Richardson (undergraduate collaborators). We are indebted to
Professor Daniel Jones (MSU) for his guidance on matters of
mass spectrometry.
(12) Cramer, C. J.; Truhlar, D. G. Rev. Comput. Chem. 1995, 1.
(13) Li, Y.; Wang, X.; Jensen, F.; Houk, K. N.; Olah, G. A. J. Am.
Chem. Soc. 1990, 112, 3922.
(14) Haubenstock, H.; Sauers, R. R. Tetrahedron 2005, 61, 8358.
(15) The geometry minimized structures of (E)- and (Z)-β-methyl
styrene at the B3LYP/6-31G* level of theory finds a 2.9 kcal/mol
higher energy for the Z-isomer.
REFERENCES
■
(1) (a) Bose, A.; Mal, P. Tetrahedron Lett. 2014, 55, 2154. (b) Chen,
J.; Zhou, L. Synthesis 2014, 46, 586. (c) de Mattos, M. C. S. Curr. Org.
Synth. 2013, 10, 819. (d) Galligan, M. J.; Akula, R.; Ibrahim, H. Org.
Lett. 2014, 16, 600. (e) Getrey, L.; Krieg, T.; Hollmann, F.; Schrader,
J.; Holtmann, D. Green Chem. 2014, 16, 1104. (f) Kamei, T.; Ishibashi,
A.; Shimada, T. Tetrahedron Lett. 2014, 55, 4245. (g) Stodulski, M.;
(16) Kafafi, S. A.; Mautner, M.; Liebman, J. F. Struct. Chem. 1990, 1,
101.
G
dx.doi.org/10.1021/ja506889c | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX