Chemistry - An Asian Journal
10.1002/asia.201600801
FULL PAPER
1998, 41, 3872-3878; c) M. Del Poeta, W. A. Schell, C. C. Dykstra, S.
Jones, R. R. Tidwell, A. Czarny, M. Bajic, M. Bajic, A. Kumar, D. Boykin,
J. R. Perfect, Antimicrob. Agents Chemother. 1998, 42, 2495-2502.
[15] D. T. Richter, T. D. Lash, Tetrahedron Lett. 1999, 40, 6735-6738.
[16] O. W. Howarth, G. G. Morgan, V. McKee, J. Nelson, J. Chem. Soc.,
Dalton Trans. 1999, 2097-2102.
appropriate parameters of current at the 20–21 ºC. Then organic and
aqueous phases were separated and analyzed by HPLC.
Electrochemical synthesis of DFF (preparative procedure)
[17] A. Gandini, M. N. Belgacem, Prog. Polym. Sci. 1997, 22, 1203-1379.
[18] X. Tong, Y. Ma, Y. Li, Appl. Catal., A 2010, 385, 1-13.
[19] X. Liu, H. Ding, Q. Xu, W. Zhong, D. Yin, S. Su, J. Energy Chem. 2016,
25, 117-121.
[20] S. Dutta, S. De, B. Saha, ChemPlusChem 2012, 77, 259-272.
[21] S. Li, K. Su, Z. Li, B. Cheng, Green Chem. 2016.
[22] V. P. Kashparova, E. A. Khokhlova, K. I. Galkin, V. M. Chernyshev, V.
P. Ananikov, Russ. Chem. Bull. 2016, 64, 1069-1073.
[23] a) C. Laugel, B. Estrine, J. Le Bras, N. Hoffmann, S. Marinkovic, J.
Muzart, ChemCatChem 2014, 6, 1195-1198; b) Q. Girka, B. Estrine, N.
Hoffmann, J. Le Bras, S. Marinkovic, J. Muzart, React. Chem. Eng.
2016.
[24] a) X. Jia, J. Ma, M. Wang, Z. Du, F. Lu, F. Wang, J. Xu, Appl. Catal., A
2014, 482, 231-236; b) T. S. Hansen, I. Sádaba, E. J. García-Suárez, A.
Riisager, Appl. Catal., A 2013, 456, 44-50; c) X. Tong, Y. Sun, X. Bai, Y.
Li, RSC Adv. 2014, 4, 44307-44311; d) M. O. Kompanets, O. V. Kushch,
Y. E. Litvinov, O. L. Pliekhov, K. V. Novikova, A. O. Novokhatko, A. N.
Shendrik, A. V. Vasilyev, I. O. Opeida, Catal. Commun. 2014, 57, 60-
63; e) H. Zhao, W. Sun, C. Miao, Q. Zhao, J. Mol. Catal. A: Chem. 2014,
393, 62-67; f) C. Fang, J.-J. Dai, H.-J. Xu, Q.-X. Guo, Y. Fu, Chin.
Chem. Lett. 2015, 26, 1265-1268.
[25] a) Y. Guo, J. Chen, ChemPlusChem 2015, 80, 1760-1768; b) X. Liu, J.
Xiao, H. Ding, W. Zhong, Q. Xu, S. Su, D. Yin, Chem. Eng. J. 2016, 283,
1315-1321; c) Y. Zhu, X. Liu, M. Shen, Y. Xia, M. Lu, Catal. Commun.
2015, 63, 21-25; d) J. Chen, J. Zhong, Y. Guo, L. Chen, RSC Adv. 2015,
5, 5933-5940; e) J. Artz, S. Mallmann, R. Palkovits, ChemSusChem
2015, 8, 672-679; f) Y. Zhu, M. Shen, Y. Xia, M. Lu, Catal. Commun.
2015, 64, 37-43; g) R. Fang, R. Luque, Y. Li, Green Chem. 2016,
dx.doi.org/10.1039/C1035GC03051J; h) D. Baruah, F. L. Hussain, M.
Suri, U. P. Saikia, P. Sengupta, D. K. Dutta, D. Konwar, Catal. Commun.
2016, 77, 9-12.
Synthesis was carried out in an undivided glass cell equipped with two
platinum electrodes (each of 10 cm2 area, the inter electrode distance
was 3.5 cm), water cooling jacket and a mechanical stirrer. A solution of
NaHCO3 (4.20 g, 50 mmol) and KI (3.32 g, 20 mmol) in water (100 mL)
was added to a solution of HMF (1.26 g, 10 mmol) and 4-AcNH-TEMPO
(0.21 g, 1 mmol for fresh electrolyte (aqueous phase); 0.021 g, 0.1 mmol,
if a recycled electrolyte is used) in CH2Cl2 (50 mL). The whole solution
was stirred at a rate of 300 rpm to form an emulsion. The electrolysis was
carried out at the galvanostatic conditions using square wave pulses, an
anode pulse current density was 80 mA cm-2, durations of the pulse-on
time ton and the pulse-of time toff were 1 and 2 min, respectively. The total
time of electrolysis was 2.5 h while maintaining the temperature at 20–25
ºC. After passing 2400 C (2.5 F charge per mole of HMF), the magnetic
stirring was stopped. Then organic phase was separated, and aqueous
phase was extracted with CH2Cl2 (2× 25 mL). The combined organic
phase was treated with a saturated solution of sodium thiosulfate (3 mL)
to complete discoloration, dried with anhydrous Na2SO4, then passed
through a short column of Al2O3 (4×5 cm) and evaporated to dryness to
give crude DFF of 91-92% purity according to HPLC analysis (yield 61-
63%). The product was recrystallized from water to give 0.68-0.72 g
(yield 55-58%) of pure DFF with mp 109-110 ºC (lit. 108-110 ºC).[14a]
Acknowledgements
[26] Y.-Z. Qin, Y.-M. Li, M.-H. Zong, H. Wu, N. Li, Green Chem. 2015, 17,
3718-3722.
[27] a) B. Karimi, H. M. Mirzaei, E. Farhangi, ChemCatChem 2014, 6, 758-
762; b) N. Mittal, G. M. Nisola, J. G. Seo, S.-P. Lee, W.-J. Chung, J.
Mol. Catal. A: Chem. 2015, 404–405, 106-114.
[28] G. Lv, H. Wang, Y. Yang, T. Deng, C. Chen, Y. Zhu, X. Hou, Green
Chem. 2016.
[29] K. R. Vuyyuru, P. Strasser, Catal. Today 2012, 195, 144-154.
[30] H. G. Cha, K.-S. Choi, Nat. Chem. 2015, 7, 328-333.
[31] a) R. A. Miller, R. S. Hoerrner, Org. Lett. 2003, 5, 285-287; b) J. C. Qiu,
P. P. Pradhan, N. B. Blanck, J. M. Bobbitt, W. F. Bailey, Org. Lett. 2012,
14, 350-353; c) J. M. Bobbitt, C. BrüCkner, N. Merbouh, in Organic
Reactions, John Wiley & Sons, Inc., 2009, pp. 103-424.
This work was financially supported by the Russian Science
Foundation (grant no. 14-23-00078). The authors also thank the
Shared Research Center “Nanotechnologies” of the Platov
South-Russian State Polytechnic University and the Department
of Structural Studies of Zelinsky Institute of Organic Chemistry
for analytical services.
Keywords: 4-Acetylamino-2,2,6,6-tetramethylpiperidine-1-oxyl •
2,5-Diformylfuran • Electrochemistry • HMF • Oxidation
[32] L. Cottier, G. Descotes, E. Viollet, J. Lewkowski, R. Skowroñski, J.
Heterocyclic Chem. 1995, 32, 927-930.
[33] a) S. Tang, K. Liu, Y. Long, X. Qi, Y. Lan, A. Lei, Chem. Commun. 2015,
51, 8769-8772; b) S. Tang, K. Liu, Y. Long, X. Gao, M. Gao, A. Lei, Org.
Lett. 2015, 17, 2404-2407; c) D. Liu, A. Lei, Chem. Asian. J. 2015, 10,
806-823; d) M. S. Yusubov, V. V. Zhdankin, Resource-Efficient
Technologies 2015, 1, 49-67; e) D. Beukeaw, K. Udomsasporn, S.
Yotphan, J. Org. Chem. 2015, 80, 3447-3454.
[1]
[2]
M. Besson, P. Gallezot, C. Pinel, Chem. Rev. 2014, 114, 1827-1870.
B. R. Caes, R. E. Teixeira, K. G. Knapp, R. T. Raines, ACS Sustainable
Chem. Eng. 2015, 3, 2591-2605.
a) L. Wang, F.-S. Xiao, Green Chem. 2015, 17, 24-39; b) R. A. Sheldon,
J. Mol. Catal. A: Chem.,
[3]
[34] M. Rafiee, K. C. Miles, S. S. Stahl, J. Am. Chem. Soc. 2015, 137,
14751-14757.
[4]
a) R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H.
J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597; b) P. K.
Rout, A. D. Nannaware, O. Prakash, A. Kalra, R. Rajasekharan, Chem.
Eng. Sci. 2016, 142, 318-346.
a) A. Gandini, T. M. Lacerda, A. J. F. Carvalho, E. Trovatti, Chem. Rev.
2016, 116, 1637-1669; b) D. Esposito, M. Antonietti, Chem. Soc. Rev.
2015, 44, 5821-5835.
a) J. Zhang, J. Li, Y. Tang, L. Lin, M. Long, Carbohydr. Polym. 2015,
130, 420-428; b) Z. Zhang, K. Deng, ACS Catal. 2015, 5, 6529-6544.
W. Hao, W. Li, X. Tang, X. Zeng, Y. Sun, S. Liu, L. Lin, Green Chem.
2016, 18, 1080-1088.
[35] S. Chen, W. Huang, Z. Niu, Z. Li, Chem. Phys. Lett. 2006, 421, 161-165.
[36] T. Inokuchi, S. Matsumoto, S. Torii, J. Org. Chem. 1991, 56, 2416-2421.
[37] a) B. A. Frontana-Uribe, R. D. Little, J. G. Ibanez, A. Palma, R.
Vasquez-Medrano, Green Chem. 2010, 12, 2099-2119; b) R. Francke,
R. D. Little, Chem. Soc. Rev. 2014, 43, 2492-2521; c) A. J. Bosco, S.
Lawrence, C. Christopher, S. Radhakrishnan, A. A. Joseph Rosario, S.
Raja, D. Vasudevan, J. Phys. Org. Chem. 2015, 28, 591-595.
[38] a) E. S. Kagan, V. P. Kashparova, I. Y. Zhukova, I. I. Kashparov, Russ.
J. Appl. Chem. 2010, 83, 745-747; b) R. A. Sheldon, Catal. Today 2015,
247, 4-13.
[5]
[6]
[7]
[39] a) D. T. Chin, J. Electrochem. Soc. 1983, 130, 1657-1667; b) S. Roy,
Ind. Eng. Chem. Res. 2012, 51, 1756-1760; c) N. Monk, S. Watson, Int.
J. Hydrogen Energy 2016, 41, 7782-7791; d) T. Fuchigami, S. Inagi,
Chem. Commun. 2011, 47, 10211-10223; e) T. Fuchigami, S. Inagi, in
Fundamentals and Applications of Organic Electrochemistry, John
Wiley & Sons Ltd, 2014, pp. 83-128; f) J. Yano, T. Morita, K. Shimano,
Y. Nagami, S. Yamasaki, J. Solid State Electrochem. 2007, 11, 554-
557; g) J. Wang, Y. Xu, J. Wang, X. Du, F. Xiao, J. Li, Synth. Met. 2010,
160, 1826-1831; h) J. Wang, Y. Xu, J. Zhu, Y. Bai, S. Mao, L. Xiong, J.
Solid State Electrochem. 2016, 20, 1413-1420; i) H. Karami, A. R.
Nezhad, Int. J. Electrochem. Sci. 2013, 8, 8905-8921.
[8]
[9]
J. J. Roylance, T. W. Kim, K.-S. Choi, ACS Catal. 2016, 1840-1847.
Z. Miao, Y. Zhang, X. Pan, T. Wu, B. Zhang, J. Li, T. Yi, Z. Zhang, X.
Yang, Catal. Sci. Technol. 2015, 5, 1314-1322.
[10] A. S. Amarasekara, D. Green, L. D. Williams, Eur. Polym. J. 2009, 45,
595-598.
[11] T.-L. Choi, K.-M. Han, J.-I. Park, D. H. Kim, J.-M. Park, S. Lee,
Macromolecules 2010, 43, 6045-6049.
[12] J. Ma, M. Wang, Z. Du, C. Chen, J. Gao, J. Xu, Polym. Chem. 2012, 3,
2346-2349.
[13] C. Mallet, C. Moussallem, A. Faurie, M. Allain, F. Gohier, W. G. Skene,
P. Frère, Chem. Eur. J. 2015, 21, 7944-7953.
[14] a) G. A. Halliday, R. J. Young, V. V. Grushin, Org. Lett. 2003, 5, 2003-
2005; b) K. T. Hopkins, W. D. Wilson, B. C. Bender, D. R. McCurdy, J.
E. Hall, R. R. Tidwell, A. Kumar, M. Bajic, D. W. Boykin, J. Med. Chem.
7