been proposed for the concentration-dependent photobleach-
ing of xanthene dyes in inert matrices.48
15 G. Schonherr, R. Eiermann, H. Bassler and M. Silver, Chem.
Phys., 1980, 52, 287.
16 J. M. Jean, C.-K. Chan, G. R. Fleming and T. G. Owens, Biophys.
J., 1989, 56, 1203.
17 K. M. Gaab and C. J. Bardeen, J. Phys. Chem. A, 2004, 108, 10801.
18 C. Madigan and V. Bulovic, Phys. Rev. Lett., 2006, 96, 046404/1.
19 T. Nguyen, V. Doan and B. J. Schwartz, J. Chem. Phys., 1999, 110,
4068.
20 P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J.-S. Kim, C.
M. Ramsdale, H. Sirringhaus and R. H. Friend, Phys. Rev. B,
2003, 67, 064203/1.
21 F. C. Spano, J. Chem. Phys., 2005, 122, 234701/1.
22 M. Gaal, E. J. W. List and U. Scherf, Macromolecules, 2003, 36,
4236.
23 N. T. Harrison, G. R. Hayes, R. T. Phillips and R. H. Friend,
Phys. Rev. Lett., 1996, 77, 1881.
24 H. Langhals, R. Ismael and O. Yuruk, Tetrahedron, 2000, 56,
5435.
25 A. Herrmann, T. Weil, V. Sinigersky, U.-M. Wiesler, T. vosch, J.
Hofkens, F. C. D. Schryver and K. Mullen, Chem.-Eur. J., 2001, 7,
4844.
Conclusion
In this work we have explored the photophysical properties of
highly concentrated polymer solutions of sterically hindered
conjugated chromophores. We found that both ring substi-
tuted perylenes and a nonplanar spiro compound can retain
their monomeric emission properties even in the neat solid,
where the chromophore concentration is B1 M. Fluorescence
self-quenching, however, places an upper limit on their con-
centration in an amorphous polymer of B0.1 M, however, if
high (>80%) fluorescence quantum yields are desired. Even at
these lower concentrations, rapid photobleaching limits the
practical usefulness of such highly concentrated dye-doped
solids. The strategy of preventing aggregation by steric hin-
drance is thus only partially successful in these compounds. It
appears that a better understanding of the mechanisms of
photobleaching and nonradiative quenching in dense chromo-
phore systems is necessary in order to eventually achieve
stable, highly luminescent dye/polymer systems with dye
concentrations comparable to the chromophore densities in
conjugated polymer systems.
26 S. Yokoyama, A. Otomo and S. Mashiko, Appl. Phys. Lett., 2002,
80, 7.
27 F. Wurthner, Chem. Commun., 2004, 1564.
28 A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C.
Bradley and I. D. W. Samuel, J. Appl. Phys., 2002, 92, 6367.
29 B. X. Mi, Z. Q. Gao, C. S. Lee, S. T. Lee, H. L. Kwong and N. B.
Wong, Appl. Phys. Lett., 1999, 75, 4055.
30 R. O. Al-Kaysi, G. Guirado and E. J. Valente, Eur. J. Org. Chem.,
2004, 3408.
31 L. B. A. Johansson, J. G. Molotkovsky and L. D. Bergelson, J.
Am. Chem. Soc., 1987, 109, 7374.
32 K.-H. Koch and K. Muellen, Chem. Ber., 1991, 124, 2091.
33 W. Holzer, A. Penzkofer, M. Pilchmaier, D. D. C. Bradley and W.
J. Blau, Chem. Phys., 1999, 248, 273.
34 L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms,
Dover, New York, 1987.
Acknowledgements
This research was supported by the National Science Founda-
tion grant CHE-0517095. CJB is an Alfred P. Sloan Fellow.
35 J. A. Ferreira and G. Porter, J. Chem. Soc., Faraday Trans. 2, 1977,
73, 340.
36 M. Schlosser and S. Lochbrunner, J. Phys. Chem. B, 2006, 110,
6001.
37 J. B. Birks, Photophysics of Aromatic Molecules, Wiley & Sons,
London, 1970.
38 S. D. Backer, G. B. dutt, M. Ameloot, F. C. D. Schryver, K.
Mullen and F. Holtrup, J. Phys. Chem., 1996, 100, 512.
39 J. C. D. Verhagen, M. A. M. J. v. Zandvoort, J. M. Vroom, L. B.
A. Johansson and G. v. Ginkel, J. Phys. Chem. B, 1997, 101,
10568.
40 A. Schmidt, N. R. Armstrong, C. Goeltner and K. Muellen, J.
Phys. Chem., 1994, 98, 11780.
41 D. L. Huber, D. S. Hamilton and B. Barnett, Phys. Rev. B, 1977,
16, 4642.
42 C. R. Gochanour and M. D. Fayer, J. Phys. Chem., 1981, 85, 1989.
43 J. Baumann and M. D. Fayer, J. Chem. Phys., 1986, 85, 4087.
44 S. C. J. Meskers, J. Hubner, M. Oestreich and H. Bassler, J. Phys.
Chem. B, 2001, 105, 9139.
45 E. J. W. List, C. Creely, G. Leising, N. Schulte, A. D. Schluter, U.
Scherf, K. Mullen and W. Graupner, Chem. Phys. Lett., 2000, 325,
132.
46 L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin,
E. W. Kwock and T. M. Miller, Synth. Met., 1996, 80, 41.
47 C. Julien, A. Debarre, D. Nutarelli, A. Richard and P. Tchenio, J.
Phys. Chem. B, 2005, 109, 23145.
48 M. Talhavini and T. D. Z. Atvars, J. Photochem. Photobiol., A,
1998, 114, 65.
References
1 S. E. Gledhill, B. Scott and B. A. Gregg, J. Mater. Res., 2005, 20,
3167.
2 H. Hoppe and N. S. Sariciftci, J. Mater. Chem., 2006, 16, 45.
3 M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf,
A. J. Heeger and C. J. Brabec, Adv. Mater., 2006, 18, 789.
4 K. E. Achyuthan, T. S. Bergstedt, L. Chen, R. M. Jones, S.
Kumaraswamy, S. A. Kushon, K. D. Ley, L. Lu, D. McBranch,
H. Mukundan, F. Rininsland, X. Shi, W. Xia and D. G. Whitten,
J. Mater. Chem., 2005, 15, 2648.
5 C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco and A. J.
Heeger, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 6297.
6 T. D. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev., 2000,
100, 2537.
7 R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R.
N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L.
Bredas, M. Logdlund and W. R. Salaneck, Nature, 1999, 397, 121.
8 T. Forster, Ann. Phys., 1948, 2, 55.
9 S. G. Fedorenko and A. I. Burshtein, Chem. Phys., 1985, 98, 341.
10 C. R. Gochanour, H. C. Andersen and M. D. Fayer, J. Chem.
Phys., 1979, 70, 4254.
11 K. Godzik and J. Jortner, J. Chem. Phys., 1980, 72, 4471.
12 S. W. Haan and R. Zwanzig, J. Chem. Phys., 1978, 68, 1879.
13 J. Klafter and R. Silbey, J. Chem. Phys., 1980, 72, 843.
14 P. T. Rieger, S. P. Palese and R. J. D. Miller, Chem. Phys., 1997,
221, 85.
ꢁc
This journal is the Owner Societies 2006
Phys. Chem. Chem. Phys., 2006, 8, 3453–3459 | 3459