5324
A. S. Kiselyov / Tetrahedron 57 *2001) 5321±5326
1
1. Experimental
1.1.5. Analytical data for 5d. 68% yield, oil. H NMR
400 MHz, DMSO-d6): d 0.99 t, J8.0 Hz, 3H), 3.68 t,
J8.0 Hz, 2H), 6.14 br s, 2H, exch. D2O, NH2), 7.08 dd,
J8.0, 1.6 Hz, 1H) 7.38 t, J8.0 Hz, 1H), 7.42 s, 1H),
7.46 t, J8.0 Hz, 1H), 7.54 d, J8.0 Hz, 1H), 7.60 t,
J8.0 Hz, 1H), 7.97 d, J8.0 Hz, 1H), 8.05 d,
J8.0 Hz, 1H); 19F NMR 400 MHz, DMSO-d6): d
2115.9; ESI MS: M11) 345, M21) 343. Elemental
analysis, calcd for C19H15ClFNO2: C, 66.38; H, 4.40; N,
4.07. Found: C, 66.18; H, 4.28; N, 3.86.
1.1. Typical experimental procedure for the synthesis of
naphthalenes 5 in solution
A solution of ethyl 2- tri¯uoromethyl)phenyl acetate 1)
232 mg, 1 mmol, prepared by re¯uxing the corresponding
commercially available acid in EtOH with a couple of drops
of concentrated H2SO4 for 5 h) in 100 mL of dry THF was
added via funnel at the rate of 0.25 mL/min to a vigorously
stirred mixture of arylacetonitrile 2 mmol), and LDA
4 mmol, freshly prepared from diisopropylamine and
n-BuLi) in 200 mL of dry THF at 2308C under Ar. After
the addition was ®nished 6±7 h), the dark yellow reaction
mixture was warmed up to room temperature and stirred for
an additional 4 h. The resulting solution was concentrated in
vacuo, and the residue was partitioned between EtOAc and
concentrated aqueous NH4Cl, and the aqueous layer was
extracted with EtOAc. The combined organic extracts
were dried over Na2SO4, concentrated in vacuo, and puri®ed
by column chromatography Silica gel, hexane/
EtOAc2:1) to afford the analytically pure naphthalene 5.
1
1.1.6. Analytical data for 5e. 64% yield, oil. H NMR
400 MHz, DMSO-d6): d 1.03 t, J8.0 Hz, 3H), 3.63 t,
J8.0 Hz, 2H), 6.11 br s, 2H, exch. D2O, NH2), 7.12 d,
J8.0 Hz, 2H), 7.39 d, J8.0 Hz, 2H), 7.44 t, J8.0 Hz,
1H) 7.68 t, J8.0 Hz, 1H), 7.83 d, J8.0 Hz, 1H), 8.08 d,
J8.0 Hz, 1H); 19F 400 MHz, DMSO-d6): d 2115.8; ESI
MS: M11) 345, M21) 343. Elemental analysis, calcd for
C19H15ClFNO2: C, 66.38; H, 4.40; N, 4.07. Found: C, 66.20;
H, 4.48; N, 3.95.
1
1.1.7. Analytical data for 5f. 41% yield, oil. H NMR
400 MHz, DMSO-d6): d 1.02 t, J8.0 Hz, 3H), 3.67 t,
J8.0 Hz, 2H), 3.76 s, 3H, OMe), 6.03 br s, 2H, exch.
D2O, NH2), 7.06 t, J8.0 Hz, 1H), 7.17 d, J8.0 Hz,
1H) 7.23 d, J8.0 Hz, 1H), 7.36 t, J8.0 Hz, 1H), 7.54
t, J8.0 Hz, 1H), 7.71 t, J8.0 Hz, 1H), 7.72 d,
J8.0 Hz, 1H), 7.80 d, J8.0 Hz, 1H); 19F NMR
400 MHz, DMSO-d6): d 2114.0; ESI MS: M11) 340,
M21) 338. Elemental analysis, calcd for C20H18FNO3:
C, 70.78; H, 5.35; N, 4.13. Found: C, 70.51; H, 5.08; N,
4.02.
1
1.1.1. Analytical data for 2. Oil. H NMR 400 MHz,
DMSO-d6): d 0.95 t, J8.0 Hz, 3H), 3.65 q, J8.0 Hz,
2H), 7.02 s, 1H, exch. D2O, OH), 7.29 t, J8.0 Hz, 1H),
7.41 d, J8.0 Hz, 1H), 7.50±7.66 m, 2H), 7.69±7.75 m,
2H), 7.78±7.90 m, 2H); 19F NMR 400 MHz, DMSO-d6): d
2115.8, 263.3. ESI MS: M11) 379, M21) 377.
Elemental analysis, calcd for C20H14F4O3: C, 65.30; H,
3.73. Found: C, 65.18; H, 3.82.
1
1.1.2. Analytical data for 5a. 37% yield, oil. H NMR
1
1.1.8. Analytical data for 5g. 63% yield, oil. H NMR
400 MHz, DMSO-d6): d 1.02 t, J8.0 Hz, 3H), 3.69 q,
J8.0 Hz, 2H), 6.01 br. S, 2H, exch. D2O, NH2), 7.02 t,
J8.0 Hz, 1H), 7.12±7.21 m, 6H) 7.29 d, J8.0 Hz, 1H),
7.43 t, J8.0 Hz, 1H), 7.59 t, J8.0 Hz, 1H), 7.68 t,
J8.0 Hz, 1H), 7.75 d, J8.0 Hz, 1H), 7.94 d,
J8.0 Hz, 1H); 19F NMR 400 MHz, DMSO-d6): d
2113.2; ESI MS: M11) 386, M21) 384. Elemental
analysis, calcd for C25H20FNO2: C, 77.90; H, 5.23; N,
3.63. Found: C, 77.81; H, 5.29; N, 3.52.
400 MHz, DMSO-d6): d 0.98 t, J8.0 Hz, 3H), 3.57 t,
J8.0 Hz, 2H), 3.85 s, 3H, OMe), 6.13 br s, 2H, exch.
D2O, NH2), 6.90 s, 1H), 6.93 d, J8.0 Hz, 1H), 7.04
dd, J8.0, 1.6 Hz, 1H) 7.31 t, J8.0 Hz, 1H), 7.47 t,
J8.0 Hz, 1H), 7.65 t, J8.0 Hz, 1H), 7.91 d, J8.0 Hz,
1H), 7.98 d, J8.0 Hz, 1H); 19F NMR 400 MHz, DMSO-
d6): d 2115.7; ESI MS: M11) 340, M21) 338. Elemental
analysis, calcd for C20H18FNO3: C, 70.78; H, 5.35; N, 4.13.
Found: C, 70.62; H, 5.16; N, 4.06.
1
1.1.3. Analytical data for 5b. 63% yield, oil. H NMR
1
1.1.9. Analytical data for 5h. 65% yield, oil. H NMR
400 MHz, CDCl3): d 1.02 t, J8.0 Hz, 3H), 3.68 q,
J8.0 Hz, 2H), 5.02 br s, 2H, exch. D2O, NH2), 7.08±
7.34 d, 7H), 7.37 t, J8.0 Hz, 1H), 7.45 d, J8.0 Hz,
2H), 7.72 t, J8.0 Hz, 1H), 7.86 d, J8.0 Hz, 1H), 7.97
d, J8.0 Hz, 1H); 19F 400 MHz, DMSO-d6): d 2114.9;
ESI MS: M11) 386, M21) 384. Elemental analysis, calcd
for C25H20FNO2: C, 77.90; H, 5.23; N, 3.63. Found: C,
77.76; H, 5.34; N, 3.43.
400 MHz, DMSO-d6): d 1.03 t, J8.0 Hz, 3H), 3.58 q,
J8.0 Hz, 2H), 3.88 s, 3H, OMe), 5.98 br s, 2H, exch.
D2O, NH2), 7.04 d, J8.0 Hz, 2H), 7.26 d, J8.0 Hz,
2H), 7.35 t, J8.0 Hz, 1H) 7.62 t, J8.0 Hz, 1H), 7.81
d, J8.0 Hz, 1H), 7.89 d, J8.0 Hz, 1H); 19F 400 MHz,
DMSO-d6): d 2115.9; ESI MS: M11) 340, M21) 338.
Elemental analysis, calcd for C20H18FNO3: C, 70.78; H,
5.35; N, 4.13. Found: C, 70.52; H, 5.11; N, 4.06.
1
1.1.4. Analytical data for 5c. 53% yield, oil. H NMR
400 MHz, DMSO-d6): d 1.01 t, J8.0 Hz, 3H), 3.63 q,
J8.0 Hz, 2H), 6.12 br s, 2H, exch. D2O, NH2), 7.03 t,
J8.0 Hz, 1H), 7.26 d, J8.0 Hz, 1H) 7.33 d, J8.0 Hz,
1H), 7.46 t, J8.0 Hz, 1H), 7.58 t, J8.0 Hz, 1H), 7.64 t,
J8.0 Hz, 1H), 7.81 d, J8.0 Hz, 1H), 7.92 d, J8.0 Hz,
1H); 19F NMR 400 MHz, DMSO-d6): d 2114.7; ESI MS:
M11) 345, M21) 343. Elemental analysis, calcd for
C19H15ClFNO2: C, 66.38; H, 4.40; N, 4.07. Found: C,
66.11; H, 4.24; N, 3.92.
1.2. Typical experimental procedure for the synthesis of
naphthalenes 6 on solid support
The commercially available 2-tri¯uoromethyl)phenyl ace-
tic acid was immobilized on Wang resin using the reported
DIC/DMAP protocol in dry N-methylpiperidine.14 The
resulting resin was suspended in dry pyridine, concentrated
in vacuo, washed with dry THF followed by dry Et2O, and
dried in the vacuum oven at 408C at 0.1 Torr for 4 h. We