Inorganic Chemistry
Article
(4) Bonin, J.; Costentin, C.; Louault, C.; Robert, M.; Saveant, J. M. J.
Am. Chem. Soc. 2011, 133, 6668−6674.
the actual self-exchange process, possibly through a weak
association between the radical and the phenoxide anion.
In the case of the 4,4′-biphenoxide anion [E°(ArO•/ArO−) =
(5) Song, N.; Stanbury, D. M. Inorg. Chem. 2008, 47, 11458−11460.
0.64 V],27 kArO is considerably larger than that for phenoxide
(6) Sjodin, M.; Irebo, T.; Utas, J. E.; Lind, J.; Meren
́
yi, G.; Åkermark,
̈
−
B.; Hammarstrom, L. J. Am. Chem. Soc. 2006, 128, 13076−13083.
̈
itself. Most of this increase can be ascribed to the greater
driving force for the reaction, but there is also some
(7) Kauffman, G. B.; Teter, L. A. Inorg. Synth. 1966, 8, 223−227.
(8) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory
Chemicals, 3rd ed.; Pergamon: New York, 1988.
contribution from a greater self-exchange rate constant (k11
=
4 × 107 M−1 s−1). A reduced self-exchange barrier can be
attributed to the delocalized electronic structure of the
semiquinone radical.
(9) Kaur, H.; Leung, K. H. W.; Perkins, M. J. J. Chem. Soc., Chem.
Commun. 1981, 142−143.
(10) Hamilton, L.; Nielsen, B. R.; Davies, C. A.; Symons, M. C. R.;
Winyard, P. G. Free Radical Res. 2003, 37, 41−49.
(11) Kanetani, F.; Yamaguchi, H. Bull. Chem. Soc. Jpn. 1981, 54,
3048−3058.
(12) Konaka, R.; Sakata, S. Chem. Lett. 1982, 411−414.
(13) Amblard, F.; Govindarajan, B.; Lefkove, B.; Rapp, K. L.;
Detorio, M.; Arbiser, J. L.; Schinazi, R. F. Bioorg. Med. Chem. Lett.
2007, 17, 4428−4431.
The 2,2′-biphenoxide anion is considerably more difficult to
oxidize [E°(ArO•/ArO−) = 1.00 V]27 than phenoxide, but the
−
two substrates have quite similar kArO values. A large self-
exchange rate constant of 3 × 108 M−1 s−1 is required by these
data. It is conceivable that the internal hydrogen bonding in the
2,2′ isomer reduces the degree of hydrogen bonding with the
solvent and thus leads to a greater k11 value. Corresponding
discussions of the 2,4′-biphenoxide and 4-phenoxyphenoxide
rates will require determination of the relevant E° values.
We have previously argued that the direct oxidation of
phenol by IrIV (eq 11, kArOH) involves proton transfer to the
solvent in concert with electron transfer (H2O-PCET).5 This
mechanistic assignment was based largely on the significant
solvent deuterium KIE, the high acidity of the ArOH•+ radical
cation, and the low basicity of IrIII. This conclusion is
strengthened by the CV measurements described above,
which show that IrIII is not significantly protonated in 1 M
H+. Further support for this H2O-PCET mechanism is
provided by a linear free-energy relationship that relates the
rates of oxidation of phenol to the E° values for IrIV and a set of
three RuIII oxidants.3 It seems reasonable to assign a H2O-
PCET mechanism to all of the phenol reactions in Table 1.
Recently, Bonin et al. have developed a theoretical treatment of
CPET reactions with water (and other bases) as the proton
acceptor;4 this theory predicts, in the absence of other effects,
that these reactions should display a typically Marcusian
dependence of the rates on the driving forces. Qualitatively,
Table 1 shows that this expectation is met in comparing phenol
with 4,4′-biphenol and in comparing 4,4′-biphenol with 2,2′-
biphenol. However, 2,2′-biphenol reacts 9 times faster than
phenol, even though it is 0.07 V more difficult to oxidize. This
apparent contradiction may signal the importance of several
other variables in the theory of H2O-PCET.
(14) Sarala, R.; Stanbury, D. M. Inorg. Chem. 1990, 29, 3456−3460.
(15) Sawyer, D. T.; Sobkowiak, A.; Roberts, J. L. Electrochemistry for
Chemists, 2nd ed.; John Wiley and Sons: New York, 1995; p 192.
(16) Spartan ’08; Wavefunction, Inc.: Irvine, CA, 2008.
(17) Bruhn, H.; Nigam, S.; Holzwarth, J. F. Faraday Discuss. Chem.
Soc. 1982, 74, 129−140.
(18) Bonin, J.; Costentin, C.; Robert, M.; Saveant, J. M. Org. Biomol.
Chem. 2011, 9, 4064−4069.
(19) Irebo, T.; Reece, S. Y.; Sjodin, M.; Nocera, D. G.;
̈
Hammarstrom, L. J. Am. Chem. Soc. 2007, 129, 15462−15464.
̈
(20) Zalomaeva, O. V.; Trukhan, N. N.; Ivanchikova, I. D.;
Panchenko, A. A.; Roduner, E.; Talsi, E. P.; Sorokin, A. B.; Rogov,
V. A.; Khodeeva, O. A. J. Mol. Catal. A 2007, 277, 185−192.
(21) Ide, H.; Hagi, A.; Ohzumi, S.; Murakami, A.; Makino, K.
Biochem. Int. 1992, 27, 367−372.
(22) Martell, A. E.; Smith, R. M.; Motekaitis, R. J. NIST Critically
Selected Stability Constants of Metal Complexes Database, version 7.0;
U.S. Department of Commerce: Gaithersburg, MD, 2003.
(23) Fine, D. A. Inorg. Chem. 1969, 8, 1014−1016.
(24) Makarycheva-Mikhailova, A. V.; Stanbury, D. M.; McKee, M. L.
J. Phys. Chem. B 2007, 111, 6942−6948.
(25) Ye, M.; Schuler, R. H. J. Phys. Chem. 1989, 93, 1898−1902.
(26) Das, T. N. J. Phys. Chem. A 2001, 105, 5954−5959.
(27) Jonsson, M.; Lind, J.; Meren
́
yi, G. J. Phys. Chem. A 2002, 106,
4758−4762.
(28) Jonsson, M.; Lind, J.; Meren
́
yi, G. J. Phys. Chem. A 2003, 107,
5878−5879.
(29) Al-Ajlouni, A.; Bakac, A.; Espenson, J. H. Inorg. Chem. 1993, 32,
5792−5796.
(30) Papina, A. A.; Koppenol, W. H. Chem. Res. Toxicol. 2007, 20,
ASSOCIATED CONTENT
* Supporting Information
Thirteen tables of kinetic data, four figures of spectra, six figures
of kinetic data, and one figure of spectrophotometric titration
data. This material is available free of charge via the Internet at
2021−2022.
■
(31) Al-Ajlouni, A. M.; Shawakfeh, K. Q.; Rajal, R. Kinet. Catal. 2009,
S
50, 88−96.
(32) Pelizzetti, E.; Mentasti, E. J. Inorg. Nucl. Chem. 1977, 39, 2227−
2230.
(33) Margerum, D. W.; Chellappa, K. L.; Bossu, F. P.; Burce, G. L. J.
Am. Chem. Soc. 1975, 97, 6894−6896.
(34) Neta, P.; Grodkowski, J. J. Phys. Chem. Ref. Data 2005, 34, 109−
199.
(35) Lind, J.; Shen, X.; Eriksen, T. E.; Meren
1990, 112, 479−482.
(36) Tripathi, G. N. R.; Schuler, R. H. J. Chem. Phys. 1982, 88, 253−
255.
(37) Binstead, R. A.; Jung, B.; Zuberbuhler, A. D. Specfit/32 Global
Analysis System, version 3.0; Spectrum Software Associates:
Marlborough, MA, 2000.
AUTHOR INFORMATION
Corresponding Author
■
́
yi, G. J. Am. Chem. Soc.
ACKNOWLEDGMENTS
We thank the NSF for support of this research.
■
REFERENCES
(38) Zuckerman, J. J. Inorganic Reactions and Methods; VCH:
■
Deerfield Beach, FL, 1986; Vol. 15, pp 13−47.
(1) Huynh, M. H. V.; Meyer, T. J. Chem. Rev. 2007, 107, 5004−5064.
(2) Cecil, R.; Littler, J. S. J. Chem. Soc. B 1968, 1420−1427.
(3) Bonin, J.; Costentin, C.; Louault, C.; Robert, M.; Routier, M.;
(39) Hurwitz, P.; Kustin, K. Trans. Faraday Soc. 1966, 62, 427−432.
(40) Ram, M. S.; Stanbury, D. M. J. Phys. Chem. 1986, 90, 3691−
3696.
́
Saveant, J.-M. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 3367−3372.
12772
dx.doi.org/10.1021/ic201897m|Inorg. Chem. 2011, 50, 12762−12773