8166
S. H. Lee et al. / Tetrahedron Letters 46 (2005) 8163–8167
Pb2+ ion and irradiation at 344 nm, the fluorescence of 2
was observed to revive although the Pb2+ ion is known
as a quenching metal ion as shown in Figure 5, whereas
3 without ionophoric part for the lead ion did not
change in the fluorescence spectrum. It is obviously
due to the less overlapped bands between the donor
(emission) and the acceptor (absorption) caused by a
hypsochromical shift of diazo units by the metal ion
complexation, resulting in a diminished FRET effect
(Fig. 6). According to the fluorescence emission changes
in metal ion titration, we could obtain the association
constant21 of 2 (Ka = 4.0 · 106 MÀ1) for Pb2+ ion. Fig-
ure 6 shows luminosity changes of 1 (a) and 2 (b) upon
Pb2+ ion complexation where the luminosity of 2
decreases compared to that of 1 by the FRET, but
increases by the addition of Pb2+ ion. In addition, the
Pb2+ ion selectivity was also observed by the selective
color change of 2 from pale green to colorless (Fig. 7c).
Acknowledgments
This work was supported in part by the SRC program
of the Korea Science and Engineering Foundation
(KOSEF) through the Center for Intelligent Nano-Bio
Materials at Ewha Womans University (Grant No.:
R11-2005-008-02001-0).
References and notes
1. (a) Chemosensors of Ion and Molecule Recognition; Des-
vergne, J. P., Czarnik, A. W., Eds.; NATO ASI series;
Kluwer Academic: Dordrecht, 1997; (b) de Silva, A. P.;
Gunaratne, H. Q.; Gunnlaugsson, N. T. A.; Huxley, T.
M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem.
Rev. 1997, 97, 1515.
2. (a) Prodi, L.; Montalti, M.; Zaccheroni, N.; Bradshaw, J.
S.; Izatt, R. M.; Savage, P. B. Tetrahedron Lett. 2001, 42,
2941; (b) Rurack, K.; Kollmannsberger, M.; Resch-
Genger, U.; Daub, J. J. Am. Chem. Soc. 2000, 122, 968.
Consequently, the less fluorescent 2 caused by the FRET
revives its fluorescence by the Pb2+ ion complexation.
Compound 2 might be useful as a selective sensor for
Pb2+ ion in a dual sensing system, a visual color change
as well as a fluorescence change including the FRET
concept upon the Pb2+ ion complexation.
´
3. Brousmiche, D. W.; Serin, J. M.; Frechet, J. M. J.; He, G.
S.; Lin, T.; Chung, S. J.; Prasad, P. N. J. Am. Chem. Soc.
2003, 125, 1448.
4. (a) Tang, X.; Dmochowski, I. J. Org. Lett. 2005, 7, 279; (b)
Ono, A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43, 4300.
5. van der Veen, N. J.; Flink, S.; Deij, M. A.; Egberink, R. J.
M.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Am.
Chem. Soc. 2000, 122, 6112.
1.2
6. Beer, P. D. Acc. Chem. Res. 1998, 31, 71.
7. (a) Ji, H.-F.; Brown, G. M.; Dabestani, R. Chem.
Commun. 1999, 609; (b) Ji, H.-F.; Dabestani, R.; Brown,
G. M.; Sachleben, R. A. Chem. Commun. 2000, 833; (c) Ji,
H.-F.; Dabestani, R.; Brown, G. M.; Hettich, R. L. J.
Chem. Soc., Perkins Trans. 2 2001, 585.
Fluorescence spectrum of 1
1.0
0.8
8. (a) Gutsche, C. D. In Calixarenes, Monographs in Supra-
molecular Chemistry; Stoddart, J. F., Ed.; Royal Society of
Chemistry: Cambridge UK, 1989; Vol. 1; (b) Calixarenes:
A Versatile Class of Macrocyclic Compounds; Vicens, J.,
Bo¨hmer, V., Eds.; Kluwer: Dordrecht, 1991; (c) Bo¨hmer,
V. Angew. Chem., Int. Ed. 1995, 34, 713.
9. (a) Kim, J. S.; Shon, O. J.; Ko, J. W.; Cho, M. H.; Yu, I.
Y.; Vicens, J. J. Org. Chem. 2000, 65, 2386; (b) Kim, J. S.;
Lee, W. K.; No, K.; Asfari, Z.; Vicens, J. Tetrahedron
Lett. 2000, 41, 3345.
0.6
UV/vis spectrum of 2
0.4
UV/vis spectrum
of 2 + Pb2+ 10 eq
0.2
0.0
300
330
360
390
420
450
480
10. (a) Aoki, I.; Sakaki, T.; Shinkai, S. J. Chem. Soc., Chem.
Commun. 1992, 730; (b) Jin, T.; Ichikawa, K.; Koyama, T.
J. Chem. Soc., Chem. Commun. 1992, 499.
Wavelength (nm)
Figure 6. Changes of spectral overlap for FRET upon Pb2+ ion
complexation. Conditions: 1 (6.0 lM, excitation at 344 nm)/CH3CN; 2
(0.01 mM)/CH3CN; Pb2+ ion (10 equiv)/CH3CN.
´
11. (a) Metivier, R.; Leray, I.; Valeur, B. J. Chem. Soc., Chem.
´
Commun. 2003, 996; (b) Metivier, R.; Leray, I.; Valeur, B.
Chem. Eur. J. 2004, 10, 4480.
12. Leray, I.; OÕReilly, F.; Habib Jiwan, J.-L.; Soumillion,
J.-Ph.; Valeur, B. Chem. Commun. 1999, 795.
13. Ji, H.-F.; Dabestani, R.; Brown, G. M. J. Am. Chem. Soc.
2000, 122, 9306.
14. (a) Kim, J. S.; Shon, O. J.; Rim, J. A.; Kim, S. K.; Yoon,
J. J. Org. Chem. 2002, 67, 2348; (b) Kim, J. S.; Noh, K. H.;
Lee, S. H.; Kim, S. K.; Kim, S. K.; Yoon, J. J. Org. Chem.
2003, 68, 597; (c) Kim, S. K.; Lee, S. H.; Lee, J. Y.;
Bartsch, R. A.; Kim, J. S. J. Am. Chem. Soc. 2004, 126,
16499; (d) Lee, J. Y.; Kim, S. K.; Jung, J. H.; Kim, J. S. J.
Org. Chem. 2005, 70, 1463.
15. (a) Kim, J. Y.; Kim, G. C.; Kim, C. R.; Lee, S. H.; Lee, J.
H.; Kim, J. S. J. Org. Chem. 2003, 68, 1933; (b) Lee, S. H.;
Kim, J. Y.; Ko, J.; Lee, J. Y.; Kim, J. S. J. Org. Chem.
2004, 69, 2902.
16. Lee, S. H.; Kim, J. Y.; Kim, S. K.; Lee, J. H.; Kim, J. S.
Tetrahedron 2004, 60, 5171.
Figure 7. Luminosity changes of (a) 1 (0.02 mM/CH3CN) and (b) 2
(0.02 mM/CH3CN) with Pb2+ ion (10 equiv), respectively. Visible
color change of (c) 2 (0.02 mM/CH3CN) upon the Pb2+ ion addition
(10 equiv).