34
T. Gunasundari, S. Chandrasekaran / Carbohydrate Research 382 (2013) 30–35
1.3.1. Synthesis of 1-deoxy-4-thio-
D
-lyxono-2,5-lactone (4)
1H NMR
1.4.1. 1,4-Dideoxy-1,4-epithio-D-arabinitol (5)
IR (neat): 3400, 1779, 1436, 1330, 1126, 1046 cmÀ1
;
1H NMR (400 MHz, CD3OD) d 2.71 (dd, J = 6.2, 10.8 Hz, 1H, –
SCH2–), 2.99 (dd, J = 5.6, 10.8 Hz, 1H), 3.23 (dd, J = 5.5, 17.5 Hz,
1H), 3.60 (dd, J = 6.8, 11.0 Hz, 1H), 3.80 (d, J = 5.4 Hz, 1H), 3.85
(dd, J = 5.5, 11.0 Hz, 1H), 4.12 (dd, J = 5.8, 11.7 Hz, 1H) ppm; 13C
NMR (100 MHz, CD3OD) d 32.9 (–SCH2–), 52.3 (–SCH–), 64.1 (–CH2-
OH–), 77.8 [–CH(OH)–], 79.2 [–CH(OH)–] ppm; HRMS for C5H10O3-
SNa [M+Na]+ calcd 173.0248; found 173.0278.
(400 MHz, CD3COCD3)
d 3.01 (d, J = 10.9 Hz, 1H), 3.25 (d,
J = 10.9 Hz, 1H), 3.62 (s, 1H), 3.68 (d, J = 11.4 Hz, 1H), 4.48 (s, 1H),
4.88 (s, 1H) ppm; 13C NMR (100 MHz, CD3COCD3) d 33.0, 48.2,
72.5, 80.8, 171.1 ppm; HRMS for C5H6O3SNa [M+Na]+ calcd
168.9922; found 168.9933.
1.3.2. Synthesis of 1-deoxy-4-thio-
CCDC 870210; mp: 88–90 °C; IR (neat): 3402, 1781, 1436, 1332,
1131, 1018, 1054 cmÀ1 1H NMR (400 MHz, CD3COCD3) d 2.96 (d,
J = 11.0 Hz, 1H), 3.30 (d, J = 11.1 Hz, 1H), 4.41 (s, 1H), 4.87 (s, 1H),
5.33 (d, J = 2.7 Hz, 1H) ppm; 13C NMR (100 MHz, CD3COCD3) d
31.8, 44.9, 78.7, 82.4, 173.2 ppm; HRMS for C5H6O3SNa [M+Na]+
calcd 168.9935; found 168.9933; Anal. Calcd for: C, 41.09; H,
4.14; S, 21.94. Found: C, 41.1; H, 4.24; S, 21.51.
D-arabino-1,4-lactone (8)
1.4.2. Synthesis of 1,4-anhydro-4-thio-D-lyxitol (9)
1H NMR (400 MHz, CD3OD) d 2.82 (d, J = 7.4 Hz, 2H, –SCH2–),
3.45 (dd, J = 6.3, 11.0 Hz, 1H), 3.57 (dd, J = 6.4, 10.9 Hz, 1H), 3.86
(dd, J = 6.9, 10.9 Hz, 1H), 4.13–4.19 (m, 2H), 4.57 (t, J = 3.3 Hz,
1H), 4.83 (t, J = 2.0 Hz, 1H) ppm; 13C NMR (100 MHz, CD3OD) d
31.7 (–SCH2–), 48.9 (–SCH–), 61.5 (–CH2OH–), 73.6 [–CH(OH)–],
75.9 [–CH(OH)–] ppm; HRMS for C5H10O3SNa [M+Na]+ calcd
173.0248; found 173.0243.
;
Crystal structure data: CCDC 870210: C5H6O3S1, Mwt = 146.14,
crystal dimensions 0.28 Â 0.24 Â 0.15, T = 296(2) K, tetragonal,
space group P2(1), a = 6.0800(5), b = 8.4996(8), c = 6.0825(6) Å,
1.4.3. 1-Deoxythiotalonojirimycin (13)
a
=
c
= 90.00°,
b = 111.262(2)°,
Z = 2,
V = 292.93(5) cm3,
= 4.72 mm
2h = 3.59–29.89°; of 1043 reflections collected, 681 were
[
a]
D +20.6 (c 1.0, MeOH), lit. [
a]
D +28.0 (c 1.1, MeOH); IR (neat):
;
q
calcd = 1.657 g/cm3, MoK radiation (k° = 0.71073 Å),
l
a
3369, 2916, 1420, 1073, 1018 cmÀ1
1H NMR (400 MHz, CD3OD) d
À1
,
2.57 (bd, J = 13.1 Hz, 1H, –SCH2–), 2.78 (dd, J = 13.5, 7.6 Hz, 1H),
2.87 (td, J = 6.1, 3.5 Hz, 1H), 3.59 (s, 1H), 3.85–3.74 (m, 2H), 3.89
(dt, J = 7.6, 3.2 Hz, 1H), 4.00 (t, J = 3.0 Hz, 1H) ppm; 13C NMR
(100 MHz, D2O) d 30.1 (–SCH2–), 47.5 (–SCH–), 61.3 (–CH2OH–),
69.5 [–CH(OH)–], 70.9 [–CH(OH)–], 71.4 [–CH(OH)–] ppm; HRMS
for C6H12O4SNa [M+Na]+ calcd 203.0354; found 203.0356.
independent (R(int) = 0.0468); refinement method full matrix least
squares on F2, 83 refined parameters, absorption correction
(SADABS, Bruker, 1996 software, Tmin 0.8793 and Tmax 0.9326),
GooF = 1.008, R1 = 0.0468, wR2 = 0.0965 (
r >2r(I)), absolute struc-
ture parameter 0.02(14), residual electron density 0.134/
À0.185 eÅÀ3
.
1.4.4. 1-Deoxythioidonojirimycin (17)
1.3.3. 1-Deoxy-5-thio-
CCDC 774512; mp: 145–146 °C; [
(neat): 3419, 3265, 1421, 1358, 1159, 1037 cmÀ1
D
-talopyrano-3,6-lactone (12)
[
a]
D
À34.5 (c, 1.0, MeOH); IR (neat): 3448, 3444, 3410, 1699,
a
]
D
+24.5 (c 1.0, MeOH); IR
1526, 1253, 1169, 1033 cmÀ1 1H NMR (400 MHz, D2O) d 2.45
;
;
1H NMR
(dd, J = 13.8, 4.4 Hz, 1H, –SCH2–), 2.58 (t, J = 13.7 Hz, 1H, –SCH2–),
2.89–2.84 (m, 1H, –SCH–), 3.23 (dd, J = 18.3, 9.1 Hz, 1H, –CH2OH),
3.58–3.53 (m, 1H, –CH2OH), 3.62 (t, J = 10.4 Hz, 1H, –CH(OH)–),
3.82–3.80 (m, 1H, –CH(OH)–), 3.87 (dd, J = 11.6, 4.0 Hz, 1H, –
CH(OH)–) ppm; 13C NMR (100 MHz, D2O) d 27.3 (–SCH2–), 45.9
(–SCH–), 57.1 (–CH2OH–), 72.9 [–CH(OH)–], 73.6 [–CH(OH)–],
73.7 [–CH(OH)–] ppm; HRMS for C6H12O4SNa [M+Na]+ calcd
203.0354; found 203.0356.
(400 MHz, CD3COCD3) d 2.61 (dd, J = 13.0, 10.2 Hz, 1H), 2.86 (dd,
J = 13.1, 5.8 Hz, 1H), 3.26 (s, 1H), 4.08 (td, J = 10.1, 5.9 Hz, 1H),
4.27 (d, J = 2.9 Hz, 1H), 4.59 (s, 1H), 4.78 (d, J = 6.1 Hz, 1H), 5.21
(d, J = 2.9, 1H) ppm; 13C NMR (100 MHz, CD3COCD3) d 28.8, 44.7,
70.0, 77.1, 89.2, 173.7 ppm; HRMS for C6H8O4SNa [M+Na]+ calcd
199.0041; found 199.3421; Anal. Calcd for: C, 40.85; H,5.27; S,
17.92. Found: C, 40.90; H, 4.58; S, 18.20.
The structures of compounds 8, 12, and 16 were solved and re-
fined using the programs WinGXv1.64.05, Sir92, and SHELXL-97.
‘Complete crystallographic data for the structural analysis have
been deposited with the Cambridge Crystallographic Data Centre,
CCDC 870210 (compound 8), CCDC 774512 (compound 12), and
CCDC 802220 (compound 16). Copies of this information may be
obtained free of charge from the Director, Cambridge Crystallo-
graphic Data Centre, 12 Union Road, Cambrige, CB2 1EZ, UK. (fax:
+44 1223 336033, email: deposit@ccdc.cam.ac.uk or via:
1.3.4. 1-Deoxy-5-thio-
CCDC 802220; mp: 178–179 °C; [
(neat): 3350, 3339, 1734, 1527, 1156, 1038, 672 cmÀ1
D
-glucopyrano-2,6-lactone (16)
a
]
D
À43.5 (c 1.0, MeOH); IR
;
1H NMR
(400 MHz, CD3COCD3) d 2.99 (dd, J = 11.7, 3.8 Hz, 1H, –SCH2–),
3.22 (m, J = 20.7, 11.7 Hz, 2H, –SCH2– and –SCH–), 3.96 (br s, 1H),
4.15 (d, J = 2.1 Hz, 1H), 4.87 (t, J = 4.1 Hz, 1H), 5.03 (d, J = 4.5 Hz,
1H), 5.10 (d, J = 3.4 Hz, 1H, –CHOCO–) ppm; 13C NMR (100 MHz,
CD3COCD3) d 23.2 (–SCH2–), 40.6 (–SCH–), 73.9 [–CH(OH)–], 77.7
[–CH(OH)–], 78.0 (–CHOCO–), 169.3 [–OC(O)–] ppm; HRMS for C6-
H8O4SNa [M+Na]+ calcd 199.0041; found 199.0039; Anal. Calcd for:
C, 40.9; H, 4.58; S, 18.2. Found: C, 40.8; H, 4.6; S, 18.2.
Acknowledgments
1.4. Typical procedure for reduction of the thiosugar lactone
using BER
The authors thank IISc, Bangalore for the award of senior re-
search fellowship to T.G., and the Department of Science and Tech-
nology (DST), New Delhi for the CCD X-ray facility. We also thank
DST for the award of J.C. Bose National Fellowship to S.C.N. Finally
we thank Mr. Amol Dikundwar and Mr. Sajesh P. Thomas for help
in single crystal analysis.
To a stirred solution of thiosugar lactone (1.0 mmol) in dry meth-
anol (12.5 mL) at 0 °C was added borohydride exchange resin
(7.5 mmol, 2.5 g) and the solution was stirred for a given period of
time. The reaction mixture was filtered and methanol (10 mL) was
added to the resin and was sonicated (ultrasonic cleaning bath,
20 kHz) for 5 min at room temperature. The reaction mixture was
then neutralized using glacial acetic acid. The reaction mixture
was filtered and concentrated in vacuo to afford the crude product
whichwas subjectedto column chromatography on silica gel elution
with methanol/chloroform 1.5:8.5 to furnish the 1-deoxythiosugar.
Supplementary data
Supplementary data associated with this article can be found,