Journal of the American Chemical Society
Communication
(11) Studies on pKa values of thioureas and squaramides:
(a) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456. (b) Bordwell, F.
G.; Algrim, D. J.; Harrelson, J. A. J. Am. Chem. Soc. 1988, 110, 5903.
(c) Bordwell, F. G.; Ji, G. Z. J. Am. Chem. Soc. 1991, 113, 8398. (d) Li,
X.; Deng, H.; Zhang, B.; Li, J.; Zhang, L.; Luo, S.; Cheng, J. − P. Chem.
- Eur. J. 2010, 16, 450. (e) Jakab, G.; Tancon, C.; Zhang, Z.; Lippert,
K. M.; Schreiner, P. R. Org. Lett. 2012, 14, 1724. (f) Ni, X.; Li, X.;
Wang, Z.; Cheng, J. − P. Org. Lett. 2014, 16, 1786. (g) See also ref 7..
(12) Increased acidity of a catalyst has been found to correlate with
increased activity and capability. See, inter alia: (a) Wittkopp, A.;
Schreiner, P. R. Chem. - Eur. J. 2003, 9, 407. (b) Jensen, K. H.; Sigman,
M. S. Angew. Chem., Int. Ed. 2007, 46, 4748. (c) Jensen, K. H.; Sigman,
M. S. J. Org. Chem. 2010, 75, 7194. (d) Parmar, D.; Sugiono, E.; Raja,
S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Science Foundation (NSF-1566402) for
financial support of this work. We thank Prof. J.-P. Cheng,
Tsinghua University, for helpful guidance on pKa measurement
techniques.
(13) For a computation study, see: Lu, T.; Wheeler, S. E. Chem. - Eur.
J. 2013, 19, 15141.
(14) (a) Gulliya, K. S. Anti-Cancer Uses for Barbituric Acid Analogs.
U.S. Patent 5674870A, Oct 7, 1997. (b) Gulliya, K. S. Uses for
Barbituric Acid Analogs. U.S. Patent 5869494A, Feb 9, 1999. (c) Kaur,
M.; Verma, P.; Singh, P. Bioorg. Med. Chem. Lett. 2009, 19, 3054.
(d) Dhorajiya, B. D.; Ibrahim, A. S.; Badria, F. A.; Dholakiya, B. Z.
Med. Chem. Res. 2014, 23, 839. (e) Penthala, N. R.; Ketkar, A.; Sekhar,
K. R.; Freeman, M. L.; Eoff, R. L.; Balusu, R.; Crooks, P. A. Bioorg.
Med. Chem. 2015, 23, 7226.
(15) To the best of our knowledge, the only use of barbituric acids as
nucleophiles in asymmetric catalysis has been in palladium-catalyzed
allylation reactions: (a) Brunner, H.; Deml, I.; Dirnberger, W.; Nuber,
B.; Reißer, W. Eur. J. Inorg. Chem. 1998, 1998, 43. (b) Brunner, H.;
Deml, I.; Dirnberger, W.; Ittner, K.-P.; Reißer, W.; Zimmermann, M.
Eur. J. Inorg. Chem. 1999, 1999, 51. (c) Trost, B. M.; Schroeder, G. M.
J. Org. Chem. 2000, 65, 1569.
REFERENCES
■
(1) For selected pioneering examples of enantioselective hydrogen-
bond donor catalysis, see: (a) Sigman, M. S.; Jacobsen, E. N. J. Am.
Chem. Soc. 1998, 120, 4901. (b) Wenzel, A. G.; Jacobsen, E. N. J. Am.
Chem. Soc. 2002, 124, 12964. (c) Huang, Y.; Unni, A. K.; Thadani, A.
N.; Rawal, V. H. Nature 2003, 424, 146. (d) Nugent, B. M.; Yoder, R.
A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418.
(2) For reviews of hydrogen-bond donor catalysis, see: (a) Doyle, A.
G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713. (b) Hydrogen Bonding
in Organic Synthesis; Pihko, P. M., Ed.; Wiley-VCH: Weinheim, 2009.
(c) Turkmen, Y. E.; Zhu, Y.; Rawal, V. H. Brønsted Acids In
̈
Comprehensive Enantioselective Organocatalysis; Dalko, P. I., Ed.; Wiley-
VCH: Weinheim, 2013; Vol. 2, Chapter 10.
(3) For reviews of bifunctional thiourea catalysis, see: (a) Takemoto,
Y. Chem. Pharm. Bull. 2010, 58, 593. (b) Siau, W.-Y.; Wang, J. Catal.
Sci. Technol. 2011, 1, 1298.
(4) For early examples of thiourea-based bifunctional catalysis, see:
(a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125,
12672. (b) Yoon, T.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44,
466.
(5) For the first applications of squaramides as asymmetric
organocatalysts, see: (a) Malerich, J. P.; Hagihara, K.; Rawal, V. H. J.
Am. Chem. Soc. 2008, 130, 14416. (b) Lee, J. W.; Ryu, T. H.; Oh, J. S.;
Bae, H. Y.; Jang, H. B.; Song, C. E. Chem. Commun. 2009, 7224.
(c) Zhu, Y.; Malerich, J. P.; Rawal, V. H. Angew. Chem., Int. Ed. 2010,
49, 153.
(6) For selected recent applications of squaramides, see: (a) Albrecht,
L.; Dickmeiss, G.; Acosta, F. C.; Rodríguez-Escrich, C.; Davis, R. L.;
Jørgensen, K. A. J. Am. Chem. Soc. 2012, 134, 2543. (b) Yang, K. S.;
(16) For reports of thionation of squaric acid derivatives, see:
(a) Eggerding, D.; West, R. J. Org. Chem. 1976, 41, 3904.
(b) Frauenhoff, G. R.; Takusagawa, F.; Busch, D. H. Inorg. Chem.
1992, 31, 4002. (c) Muller, M.; Heileman, M. J.; Moore, H. W.;
̈
Schaumann, E.; Adiwidjaja, G. Synthesis 1997, 1997, 50.
(17) Monothiosquarate can be prepared by limiting the amount of
the thionating agent. Studies on the synthesis and catalyst properties of
monothiosquaramides will be reported in due course.
(18) Using the method of overlapping indicators (Bordwell’s
method), the pKa of dithiosquaramide A was determined to be
13.96, whereas that for the corresponding dioxosquaramide was 18.88.
extensive studies on pKa determination of numerous squaramides and
thiosquaramides.
(20) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X. N.; Takemoto, Y. J.
Am. Chem. Soc. 2005, 127, 119.
(21) Calculated for a single molecule in vacuum: Spartan ‘08,
Wavefunction, Inc., Irvine, CA.
(22) Similar to the situation with thioureas, in the absence of other
hydrogen bond acceptors, thiosquaramides crystallize in a head-to-tail
arrangement with each thiosquaramide unit perpendicular to the next
unit. See: Custelcean, R. Chem. Commun. 2008, 295.
relevant thioureas and squaramides.
Nibbs, A. E.; Turkmen, Y. E.; Rawal, V. H. J. Am. Chem. Soc. 2013, 135,
̈
16050. (c) Manoni, F.; Connon, S. J. Angew. Chem., Int. Ed. 2014, 53,
2628.
(7) (a) Aciro, C.; Jones, L. H.; Storer, R. I. Chem. Soc. Rev. 2011, 40,
́
2330. (b) Aleman, J.; Parra, A.; Jiang, H.; Jørgensen, K. A. Chem. - Eur.
J. 2011, 17, 6890. (c) Auvil, T. J.; Schafer, A. G.; Mattson, A. E. Eur. J.
Org. Chem. 2014, 2014, 2633. (d) Chauhan, P.; Mahajan, S.; Kaya, U.;
Hack, D.; Enders, D. Adv. Synth. Catal. 2015, 357, 253.
(8) (a) Portell, A.; Barbas, R.; Braga, D.; Polito, M.; Puigjaner, C.;
Prohens, R. CrystEngComm 2009, 11, 52. (b) Prohens, R.; Portell, A.;
table.
Alcobe,
Bardia, M.; Bauza,
2014, 14, 2578. (d) Portell, A.; Bardia-Font, M.; Bauza,
A.; Prohens, R. CrystEngComm 2016, 18, 6437.
́
X. Cryst. Growth Des. 2012, 12, 4548. (c) Portell, A.; Font-
A.; Frontera, A.; Prohens, R. Cryst. Growth Des.
A.; Frontera,
(25) The conjugate addition products have long retention times and
broad peaks when examined by chiral HPLC, presumably a result of
their high acidity and the presence of significant enol content. The
chloro and bromo derivatives of the products (cf., 7f) form in
quantitative yield upon treatment with NCS or NBS, elute quickly, and
give sharper peaks.
́
́
(9) Ladder arrangement was also observed for the chiral, bifunctional
squaramide we had examined (see ref 5a). A reconstructed image from
the CIF file (Cambridge Structural Database Refcode: NOLRIQ;
CCDC No. 712821) from ref 5a is included in the Supporting
(10) The synthesis of achiral thiosquaramides was reported recently:
Busschaert, N.; Elmes, R. B. P.; Czech, D. D.; Wu, X.; Kirby, I. L.;
Peck, E. M.; Hendzel, K. D.; Shaw, S. K.; Chan, B.; Smith, B. D.;
Jolliffe, K. A.; Gale, P. A. Chem. Sci. 2014, 5, 3617.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX