D.F. Back et al. / Inorganica Chimica Acta 363 (2010) 807–812
811
from The Cambridge Crystallographic Data Centre via www.ccdc.
this article can be found, in the online version, at doi:10.1016/
light absorption
V4+== O2−
V3+
O−
fluorescence
Scheme 2.
References
properties of the ligand seem to be strongly dependent on the tau-
tomeric equilibrium depicted in Scheme 1, the deprotonation of
the hydroxyl group of the phenyl ring – occurred on the occasion
of the formation of 1 and 2 – should restrain its (ligand) lumines-
cence, because the main luminescence mechanism has been hin-
dered. Thus, the luminescence of complexes 1 and 2 seems not
to be associated to the ‘‘antenna effect” of the ligand [55] (i.e., en-
ergy transfer from the ligand to the metal ion, which emits the
light) but instead, to transitions associated with the O@U@O and
V@O double bonds of the chelated uranyl and vanadyl moieties,
since in this kind of species the luminescence is associated with
the M@O double bonds [56]. In the case of complex 2, the lowest
energy absorption band should correspond to electron transfer
from O2ꢁ to V4+, while luminescence corresponds to the V3+–Oꢁ ex-
cited state going back to the V@O ground state, as illustrated in
Scheme 2.
[1] Y. Cui, Q.-D. Liu, D.-R. Bai, W.-L. Jia, Y. Tao, S. Wang, Inorg. Chem. 44 (2005) 601.
[2] J. Qiao, L.D. Wang, L. Duan, Y. Li, D.Q. Zhang, Y. Qiu, Inorg. Chem. 43 (2004)
5096.
[3] L.S. Sapochak, F.E. Benincasa, R.S. Schofield, J.L. Baker, K.K.C. Riccio, D. Fogarty,
H. Kohlmann, K.F. Ferris, P.E. Burrows, J. Am. Chem. Soc. 124 (2002) 6119.
[4] Y.-Q. Li, Y. Liu, W.-M. Bu, D. Lu, Y. Wu, Y. Wang, Chem. Mater. 12 (2000) 2672.
[5] S.N. Wang, Coord. Chem. Rev. 215 (2001) 79.
[6] N. Nakamura, S. Wakabayashi, K. Miyairi, T. Fujii, Chem. Lett. (1994) 1741.
[7] Y. Hamada, T. Sano, H. Fujii, Y. Nishio, H. Takahashi, K. Shibata, Jpn. J. Appl.
Phys. 35 (1996) L1339.
[8] V.W.-W. Yam, Y.-L. Pui, K.-K. Cheung, Inorg. Chem. 39 (2000) 5741.
[9] Y.-P. Tong, Acta Crystallogr., Sect. E61 (2005) m1843.
[10] Y.-P. Tong, X.-M. Chen, S.W. Ng, Acta Crystallogr., Sect. E60 (2004) m166.
[11] Y.-P. Tong, Chin. J. Struct. Chem. (Jiegou Huaxue) 26 (2007) 108.
[12] X. Chen, F.J. Femia, J.W. Babich, J. Zubieta, Inorg. Chim. Acta 316 (2001) 33.
[13] R. Czerwieniec, A. Kapturkiewicz, R. Anulewicz-Ostrowska, J. Nowacki, J. Chem.
Soc., Dalton Trans. (2002) 3434.
[14] B. Machura, R. Kruszynski, J. Kusz, Polyhedron 26 (2007) 3455.
[15] I. Claustro, G. Abate, E. Sanchez, J.H. Acquaye, Inorg. Chim. Acta 342 (2003) 29.
[16] T.E. Keyes, D. Leane, R.J. Forster, C.G. Coates, J.J. McGarvey, M.N.
Nieuwenhuyzen, E. Figgemeier, J.G. Vos, Inorg. Chem. 41 (2002) 5721.
[17] J.G. Malecki, R. Kruszynski, M. Jaworska, P. Lodowski, Z. Mazurak, J.
Organomet. Chem. 693 (2008) 1096.
The luminescence of the uranyl complex 1 should be correlated
with the same kind of transition involving electrons transfer.
[18] A. Furuhashi, I. Ono, A. Ouchi, A. Yamasaki, Bull. Chem. Soc. Jpn. 64 (1991) 149.
[19] A. Furuhashi, K. Endo, Y. Kondo, A. Ouchi, Y. Saito, Croat. Chem. Acta 62 (1989)
141.
4. Conclusion
[20] H. Li, Y.-J. Wu, C. Xu, R.-Q. Tian, Polyhedron 26 (2007) 4389.
[21] M. Ito, A. Furuhashi, M. Shimoi, Polyhedron 16 (1997) 1889.
[22] S.H. Simonsen, C.E. Urdy, ACA, ser.2 5 (1977) 80.
In the refinement procedures for complex 1 we have found a
relatively significant residual electronic density, with an uncom-
mon value (2.645 e Åꢁ3) for the largest difference peak (see Table
1). This residual electronic density, however, can not be assigned
to any concrete atom, since the distance between the nearest peak
and the metal center is approximately 0.770 Å, shorter even than
the sum of the covalent radii of C and H, for example. On the other
hand, if this electronic density is attributed to any specific atom,
the discordance indices R1, wR2 (final R indices), and R1 (all data),
undergo an unsuitable increase. Also eventual positional disorders
were discarded, since the crystallographic refinement using PART
Instruction [57] did not stabilize the thermal ellipsoids calculation.
Thus, the acquired crystallographic data allow us, beyond doubt, to
present the structure of Fig. 1 as the real structure of complex 1.
Even though the theoretical predictions discussed above in the
second paragraph of the preceding subsection assign luminescence
only to the keto form of the ligand Hpbx, the luminescence of the
enol form cannot be ruled out. Although further examples of metal
complexes of Hpbx could not be found for comparison, the depro-
tonation of the hydroxyl group to form complexes probably also
leads to emission from the complexed ligand, as in our case. This
supposition should be supported by the fact that numerous
benzoxazole-substituted ligands are used as luminescence sensi-
tizers- and modulators of lanthanides and other transition metals
[58–61]. Anyway, we are yet not able to make conclusive compar-
isons between the luminescence properties of the ligand 2-(20-
hydroxylphenyl)benzoxazole, Hpbx, and that of the complexes
[UO2(pbx)2(CH3OH)] (1) and [VO(pbx)2] (2).
[23] P. Stenson, Acta Chem. Scand. 23 (1969) 1514.
[24] A. Furuhashi, T. Inayoshi, A. Ouchi, Bull. Chem. Soc. Jpn. 60 (1987) 3207.
[25] H. Asada, M. Ozeki, M. Fujiwara, T. Matsushita, Polyhedron 21 (2002) 1139.
[26] J.-H. Zhou, S.-L. Li, H.-H. Jiang, D.-X. Liu, Z.-H. Yang, Acta Chim. Sinica (Huaxue
Xuebao, Chin.) 56 (1998) 371.
[27] H.R. Hoveyda, S.J. Rettig, C. Orvig, Inorg. Chem. 32 (1993) 4909.
[28] Y.-P. Tong, S.-L. Zheng, X.-M. Chen, Inorg. Chem. 44 (2005) 4270.
[29] M.J. Kobylka, L.B. Jerzykiewicz, J.T. Patton, S. Przybylak, J. Utko, P. Sobota,
Collect. Czech. Chem. Commun. 72 (2007) 541.
[30] J. Arias, C.R. Newlands, M.M. Abu-Omar, Inorg. Chem. 40 (2001) 2185.
[31] H.-C. Wang, Y.-J. Wang, H.-M. Hu, G.-H. Lee, C.K. Lai, Tetrahedron 64 (2008)
4939.
[32] H. Razavi, S.K. Palaninathan, E.T. Powers, R.L. Wiseman, H.E. Purkey, N.N.
Mohamedmohaideen, S. Deechongkit, K.P. Chiang, M.T.A. Dendle, J.C.
Sacchettini, J.W. Kelly, Angew. Chem. 115 (2003) 2864.
[33] H. Razavi, S.K. Palaninathan, E.T. Powers, R.L. Wiseman, H.E. Purkey, N.N.
Mohamedmohaideen, S. Deechongkit, K.P. Chiang, M.T.A. Dendle, J.C.
Sacchettini, J.W. Kelly, Angew. Chem., Int. Ed. 42 (2003) 2758.
[34] J. Koci, V. Klimesová, K. Waisser, J. Kaustová, H.-M. Dahse, U. Möllmann, Bioorg.
Med. Chem. Lett. 12 (2002) 3275.
[35] D.F. Shi, T.D. Bradshaw, S. Wrigley, C.J. McCall, P. Lelieveld, I. Fichtner, M.F.
Stevens, J. Med. Chem. 39 (1996) 3375.
[36] C.J. Paget, K. Kisner, R.L. Stone, D.C. DeLong, J. Med. Chem. 12 (1969) 1016.
[37] R.T. Davey Jr, R.L. Dewar, G.F. Reed, M.B. Vasudevachari, M.A. Polis, J.A. Kovacs,
J. Falloon, R.E. Walker, H. Masur, S.E. Haneiwich, Proc. Natl. Acad. Sci. USA 90
(1993) 5608.
[38] É. Bonfada, G. Manzoni de Oliveira, D.F. Back, E. Schulz Lang, Z. Anorg. Allg.
Chem. 631 (2005) 878.
[39] D.F. Back, G. Manzoni de Oliveira, E. Schulz Lang, J. Inorg. Biochem. 100 (2006)
1698.
[40] D.F. Back, É. Bonfada, G. Manzoni de Oliveira, E. Schulz Lang, J. Inorg. Biochem.
101 (2007) 709.
[41] D.F. Back, G. Manzoni de Oliveira, J.P. Vargas, E. Schulz Lang, G. Tabarelli, J.
Inorg. Biochem. 102 (2008) 666.
[42] D.F. Back, G. Manzoni de Oliveira, E. Schulz Lang, J.P. Vargas, Polyhedron 27
(2008) 2551.
[43] N. Durai, G. Saminathan, J. Clin. Biochem. Nutr. 22 (1997) 31.
[44] M. Melchior, K.H. Thompson, J.M. Jong, S.J. Rettig, E. Shuter, V.G. Yuen, Y. Zhou,
J.H. McNeill, C. Orvig, Inorg. Chem. 38 (1999) 2288.
[45] K.H. Thompson, C. Orvig, J. Chem. Soc., Dalton Trans. (2000) 2885.
[46] Y. Shechter, Diabetes 39 (1990) 1.
Acknowledgment
This work was supported with funds from PRONEX-CNPq/FA-
PERGS (Brazil).
[47] G. Stokker, J. Org. Chem. 48 (1983) 2613.
[48] L.F. Campo, D.S. Corrêa, M.A. de Araújo, V. Stefani, Macromol. Rapid Commun.
21 (2000) 832.
[49] A.B. Uzoukwu, Synth. React. Inorg. Met.-Org. Chem. 22 (1992) 185.
[50] P.N. Remya, C.H. Suresh, M.L.P. Reddy, Polyhedron 26 (2007) 5016.
[51] M.R. Maurya, S. Khurana, W. Zhang, D. Rehder, J. Chem. Soc., Dalton Trans.
(2002) 3015.
Appendix A. Supplementary material
CCDC 712123 and 712124 contain the supplementary crystallo-
graphic data for 1 and 2. These data can be obtained free of charge