C O M M U N I C A T I O N S
Table 2. CDC Reaction of Tertiary Amines with Nitroalkanesa
pharmaceuticals, this catalytic reaction will be an efficient method
for the synthesis of such compounds. The scope, mechanism, and
synthetic application of this reaction are under investigation.
Acknowledgment. We are grateful to the Canada Research
Chair (Tier I) foundation (to C.J.L.), the CFI, NSERC, Merck
Frosst, and McGill University for support of our research.
Supporting Information Available: Representative experimental
procedure and characterization of all new compounds. This material is
available free of charge via the Internet at http://pubs.acs.org.
References
(
1) For representative reviews, see: (a) Crabtree, R. H. J. Organomet. Chem.
2
1
3
004, 689, 4083. (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002,
02, 1731. (c) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001,
4, 633. (d) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (e) Shilov,
A. E.; Shul’pin, G. B. Chem. ReV. 1997, 97, 2879. (f) Arndtsen, B. A.;
Bergman, R. G.; Mobley, T. A.; Peterson T. H. Acc. Chem. Res. 1995,
28, 154.
(2) Diederich, F., Stang, P. J., Eds. Metal-Catalyzed Cross-Coupling Reac-
tions; Wiley-VCH: New York, 1998.
3
(3) For representative references, see: (A) sp C-H and sp C-H: (a) Li,
Z.; Li, C.-J. Org. Lett. 2004, 6, 4997. (b) Li, Z.; Li, C.-J. J. Am. Chem.
Soc. 2004, 126, 11810. (c) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae,
T. J. Am. Chem. Soc. 2003, 125, 15312. (d) Murata, S.; Teramoto, K.;
2
Miura, M.; Nomura, M. J. Chem. Res., Miniprint 1993, 2827. (B) sp
2
C-H and sp C-H: (a) Hatamoto, Y.; Sakaguchi, S.; Ishii, Y. Org. Lett.
2
004, 6, 4623. (b) Yokota, T.; Tani, M.; Sakaguchi, S.; Ishii, Y. J. Am.
Chem. Soc. 2003, 125, 1476. (c) Reference 1c. (d) Tsuji, J.; Nagashima,
2
3
H. Tetrahedron 1984, 40, 2699. (C) sp C-H and sp C-H: (a) DeBoef,
B.; Pastine, S. J.; Sames, D. J. Am. Chem. Soc. 2004, 126, 6556. (b) Lin,
Y.; Ma, D.; Lu, X.. Tetrahedron Lett. 1987, 28, 3249. (D) sp C-H and
sp C-H: (a) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. J. Am. Chem.
Soc. 1982, 104, 5560. (b) Nicolaou, K. C.; Zipkin, R. E.; Petasis, N. A.
J. Am. Chem. Soc. 1982, 104, 5558. (c) Nicolaou, K. C.; Petasis, N. A.;
Uenishi, J.; Zipkin, R. E.; J. Am. Chem. Soc. 1982, 104, 5557. (d)
Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J. J. Am. Chem.
Soc. 1982, 104, 5555.
a
t
0
.2 mmol amine, 1.0 mL of nitroalkane, and 0.04 mL of BuOOH (5-6
b
c
M in decane). Isolated yields were based on amines. 1 equiv (0.2 mmol)
of nitromethane was used.
Scheme 2. Reaction of 1-Phenyl-pyrrolidine with Nitromethane
3
3
(
4) Cross-coupling between sp C-H and sp C-H has been reported. In
this case, however, two homo-cross-coupling products could not be
avoided, see: Brown, S. H.; Crabtree, R. H. J. Am. Chem. Soc. 1989,
1
11, 2935.
5) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37,
580.
(
(
(
2
6) Baer, H. H.; Urbas, L. In The Chemistry of the Nitro and Nitroso Group;
Patai, S., Ed.; Interscience: New York, 1970; Part 2, p 117.
7) (a) Bernardi, L.; Bonini, B. F.; Capito, E.; Dessole, G.; Comes-Franchini,
M.; Fochi, M.; Ricci, A. J. Org. Chem. 2004, 69, 8168 and references
therein. (b) Adams, H.; Anderson, J. C.; Peace, S.; Pennell, A. M. K. J.
Org. Chem. 1998, 63, 9932.
catalyst). (3) Alternatively, it is possible that tert-butylperoxide
products 6 are involved as intermediates,13 which were further
converted into the corresponding cross-coupling products catalyzed
by CuBr. 3
(
(
8) Ballini, R.; Petrini, M. Tetrahedron 2004, 60, 1017 and references therein.
9) Yao, X.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 6884.
(10) Relatively low isolated yields are due to the decomposition of the products
when the reaction mixtures were separated by column chromatography.
11) Murata, S.; Teramoto, K.; Miura, M.; Nomura, M. J. Chem. Res. (M)
Ab
(
1
993, 2827. Other oxidants, such as elemental iodine, are known to oxidize
tetrahydroisoquinolines to quinolinium intermediates, see: Leonard, N.
J.; Leubner, G. W. J. Am. Chem. Soc. 1949, 71, 3408.
(
12) (a) Evans, D. A.; Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.;
Downey, C. W. J. Am. Chem. Soc. 2003, 125, 12692. (b) Christensen,
C.; Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67,
4
875 and references therein. For a recent review, see: (c) Luzio, F. A.
In summary, CDC reaction represents a new chemical transfor-
mation. We report here the first highly efficient C-C bond
formation via CDC reaction between sp C-H bond and sp C-H
bond catalyzed by copper bromide. Because nitrogen-containing
compounds are important structural features of natural products and
Tetrahedron 2001, 57, 915. (d) Ono, N. The Nitro Group in Organic
Synthesis; Wiley-VCH: New York, 2001.
(
13) (a) Murahashi, S.-I.; Naota, T.; Kuwabara, T.; Saito, T.; Kumobayashi,
H.; Akutagawa, S. J. Am. Chem. Soc. 1990, 112, 7820. (b) Murahashi,
S.-I.; Naota, T.; Yonemura, K. J. Am. Chem. Soc. 1988, 110, 8256.
3
3
JA050058J
J. AM. CHEM. SOC.
9
VOL. 127, NO. 11, 2005 3673