T. Takeuchi et al. / Tetrahedron Letters 46 (2005) 9025–9027
9027
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
as the main interaction driving the intermolecular recog-
nition process with suitable analytes in solution. Further
details of characterization on binding sites of imprinted
polymer should be addressed to improve the effective-
ness of molecular recognition and it will be reported
elsewhere.
References and notes
1. Legon, A. C. Chem. Eur. J. 1998, 4, 1890–1897.
2. (a) Farina, A.; Meille, S. V.; Messina, M. T.; Metrangolo,
P.; Resnati, G.; Vecchio, G. Angew. Chem., Int. Ed. 1999,
38, 2433–2436; (b) De Santis, A.; Forni, A.; Liantonio, R.;
Metrangolo, P.; Pilati, T.; Resnati, G. Chem. Eur. J. 2003,
9, 3974–3983; (c) Caronna, T.; Liantonio, R.; Logothetis,
T. A.; Metrangolo, P.; Pilati, T.; Resnati, G. J. Am. Chem.
Soc. 2004, 126, 4500–4501; (d) Guido, E.; Metrangolo, P.;
Panzeri, W.; Pilati, T.; Resnati, G.; Ursini, M.; Logothetis,
T. A. J. Fluorine Chem. 2005, 126, 197–207.
1
2
3
4
5
6
7
8
9
10 11
Compounds
NH2
N
N
N
N
N
3. (a) Messina, M. T.; Metrangolo, P.; Panzeri, W.; Ragg, E.;
Resnati, G. Tetrahedron Lett. 1998, 39, 9069–9072; (b)
Metrangolo, P.; Panzeri, W.; Recupero, F.; Resnati, G.
J. Fluorine Chem. 2002, 114, 27–33.
1
2
3
4
NH2
4. Nguyen, H. L.; Horton, P. N.; Hursthouse, M. B.; Legon,
A. C.; Bruce, D. W. J. Am. Chem. Soc. 2004, 126, 16–17.
5. Legon, A. C. Angew. Chem., Int. Ed. 1999, 38, 2686–2714.
6. (a) Metrangolo, P.; Resnati, G. Chem. Eur. J. 2001, 7,
2511–2519; (b) Metrangolo, P.; Neukirch, H.; Pilati, T.;
Resnati, G. Acc. Chem. Res. 2005, 38, 386–395.
7. (a) Corradi, E.; Meille, S. V.; Messina, M. T.; Metrangolo,
P.; Resnati, G. Angew. Chem., Int. Ed. 2000, 39, 1782–
1786; (b) Fox, D. B.; Liantonio, R.; Metrangolo, P.; Pilati,
T.; Resnati, G. J. Fluorine Chem. 2004, 125, 271–281; (c)
Amati, M.; Lelj, F.; Liantonio, R.; Metrangolo, P.;
Luzzati, S.; Pilati, T.; Resnati, G. J. Fluorine Chem.
2004, 125, 629–640.
8. (a) Komiyama, M.; Takeuchi, T.; Mukawa, T.; Asanuma,
H. Molecular Imprinting; Wiley-VCH: Weinheim, 2002;
(b) Wulff, G. Chem. Rev. 2002, 102, 1–28; (c) Takeuchi, T.;
Mukawa, T.; Shinmori, H. Chem. Records 2005, 5, 263–
275.
9. (a) Vidyasankar, S.; Arnold, F. H. Biochem. Eng. 1995, 6,
218–224; (b) Haupt, K.; Mosbach, K. Chem. Rev. 2000,
100, 2495–2504.
N
N
NH2
N
5
6
7
8
NH2
NH2
N
N
9
10
11
Figure 2. Binding abilities of the imprinted polymer for DMAP and
related compounds: 1, DMAP; 2, N,N-dimethylaniline; 3, 4-picoline; 4,
4-aminopyridine; 5, aniline; 6, pyridine; 7, 2-aminopyridine; 8,
2-picoline; 9, 1-naphthylamine; 10, quinoline; 11, 8-aminoquinoline.
was better fitted in the imprinted cavity for the two point
halogen bonding between nitrogen and iodine atom
because of a less bulkiness basic group at 4-position.
Consequently, the selectivity for the imprinted polymer
was affected by the orientation of the functional groups
as well as the size of analytes.
10. (a) Matsui, J.; Kubo, H.; Takeuchi, T. Anal. Sci. 1998, 14,
699–702; (b) Kugimiya, A.; Mukawa, T.; Takeuchi, T.
Analyst 2001, 126, 772–774; (c) Kubo, H.; Nariai, H.;
Takeuchi, T. Chem. Commun. 2003, 2792–2793; (d) Kubo,
H.; Yoshioka, N.; Takeuchi, T. Org. Lett. 2005, 7, 359–
362.
In conclusion, we have newly developed the halogen
bonding-based bidentate imprinted polymer, which can
selectively bind pyridine derivatives attached with a 4-
basic group. This is the first example for use of halogen
bonding in the field of molecularly imprinted polymers
11. Lubke, M.; Whitcombe, M. J.; Vulfson, E. N. J. Am.
¨
Chem. Soc. 1998, 120, 13342–13348.