J. Am. Chem. Soc. 1997, 119, 5479-5480
5479
Synthesis of [15N,15N′]-N,N,N′,N′-Tetramethyl-
ethylenediamine and Its Use in Solvation Studies of
[6Li]-n-Butyllithium
Delia Waldmu¨ller,† Barbara J. Kotsatos,‡
Michael A. Nichols,*,‡ and Paul G. Williard*,†
Department of Chemistry, Brown UniVersity
ProVidence, Rhode Island 02912-9000
Department of Chemistry, John Carroll UniVersity
UniVersity Heights, Ohio 44118
ReceiVed February 21, 1997
N,N,N′,N′-Tetramethylethylenediamine (TMEDA) is widely
used as a ligand or cosolvent in organic syntheses, particularly
when organolithium reagents are involved.1 TMEDA has been
shown to improve product yields, alter product distributions and
increase reaction rates primarily through solvation and chelation
of the lithium cations.1a In order to elucidate the exact
mechanisms by which these reactions take place, methods which
permit the direct observation of the solvation of organolithium
bases such as lithium amides and alkyllithium compounds must
be developed and employed. While 6Li, 15N, 13C, and 31P NMR
techniques have been used to directly determine the aggregation
states of lithium amides1a,b,2 and alkyllithium compounds1c,3 and
their solvation by hexamethylphosphoramide (HMPA),4 rela-
tively few NMR studies have been reported using an [15N]-
labeled ligand, either covalently attached to the organolithium
compound2f,4a or as a free ligand in solution,5 to directly observe
solvation of the lithium cation. Herein, we report the synthesis
Figure 1. NMR spectra for a 0.14 M [6Li]-n-BuLi solution in the
presence of 1.1-1.2 equiv of [15N,15N′]TMEDA in toluene-d8 at -110
°C: (A) 6Li NMR spectrum; (B) ) 15N NMR spectrum. The 6Li-15N
coupling constant is 2.0 Hz in each spectrum. Line broadening of 0
Hz was applied to each spectrum. The 6Li (44.15 MHz) and 15N (30.408
MHz) NMR spectra are referenced to external 0.02 M [6Li]OCD3/CD3-
OD (δ ) 0 ppm) and 98% aniline/DMSO-d6 (δ ) 50 ppm) solutions,
respectively.9
† Brown University.
‡ John Carroll University.
§ Author to whom all correspondence should be sent: M. A. Nichols,
John Carroll University.
(1) (a) For leading references and a historical discussion of TMEDA’s
use in organolithium chemistry, see: Collum, D. B. Acc. Chem. Res. 1992,
25, 448-54. (b) Lucht, B. L.; Bernstein, M. P.; Remenar, J. E.; Collum,
D. B. J. Am. Chem. Soc. 1996, 118, 10707-18 and references therein. (c)
Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624 and references
therein. (d) Snieckus, V. Chem. ReV. 1990, 90, 879.
(2) (a) Collum, D. B. Acc. Chem. Res. 1993, 26, 227-234 and references
therein. (b) Wanat, R. A.; Collum, D. B.; Van Duyne, G.; Clardy, J.; DePue,
R. T. J. Am. Chem. Soc. 1986, 108, 3415. (c) Jackman, L. M.; Scarmoutzos,
L. M. J. Am. Chem. Soc. 1987, 109, 5348-55. (d) Sugaswa, K.; Shindo,
M.; Noguchi, H.; Koga, K. Tetrahedron Lett. 1996, 37, 7377-80. (e)
Hilmersson, G.; Davidsson, O. J. Org. Chem. 1995, 60, 7660-9. (f) Sato,
D.; Kawasaki, H.; Shimada, I.; Arata, Y.; Okamura, K.; Date, T.; Koga, K.
J. Am. Chem. Soc. 1992, 114, 761-3.
Scheme 1. The Synthesis of [15N,15N′]TMEDA (IV) from
[15N]Potassium Phthalimide (I) Where All Nitrogen Atoms
Are [15N]-labeled (98%)9
(3) (a) Bauer, W. J. Am. Chem. Soc. 1996, 118, 5450-5. (b) For leading
references to this group’s work, see: Bauer, W.; Schleyer, P. v. R. In
AdVances in Carbanion Chemistry; Snieckus, V., Ed.; JAI: New York,
1992; p 89. (c) For leading references to this group’s work, see: Guenther,
H.; Eppers, O.; Hausmann, H.; Huels, D.; Mons, H.-E.; Klein, K.-D.;
Maercker, A. HelV. Chim. Acta 1995, 78, 1913-32. (d) For leading
references to this group’s work, see: DeLong, G. T.; Pannell, D. K.; Clarke,
M. T.; Thomas, R. D. J. Am. Chem. Soc. 1993, 115, 7013-7014. (e) For
leading references to this group’s work, see: Fraenkel, G.; Martin, K. V.
J. Am. Chem. Soc. 1995, 117, 10336. (f) Seebach, D.; Gabriel, J.; Hassig,
R. HelV. Chim. Acta 1984, 67, 1083-99. (g) Seebach, D.; Hassig, R.;
Gabriel, J. HelV. Chim. Acta 1983, 66, 308-37. (h) Gunther, M.; Moskau,
D.; Bast, P.; Schmalz, D. Angew. Chem., Int. Ed. Engl. 1987, 26, 1212.
(4) (a) Reich, H. J.; Gudmundsson, B. O. J. Am. Chem. Soc. 1996, 118,
6074-5. (b) Reich, H. J.; Borst, J. P.; Dykstra, R. R.; Green, D. P. J. Am.
Chem. Soc. 1993, 115, 8728-41. (c) Jackman, L. M.; Chen, X. J. Am.
Chem. Soc. 1992, 114, 403-11. (d) Riech, H. J.; Borst, J. P. J. Am. Chem.
Soc. 1991, 113, 1835-7. (e) Riech, H. J.; Green, D. P. J. Am. Chem. Soc.
1989, 111, 8729-31. (f) Romesberg, F. E.; Bernstein, M. P.; Gilchrist, J.
H.; Harrison, A. T.; Fuller, D. J.; Collum, D. B. J. Am. Chem. Soc. 1993,
115, 3475-83. (g) Romesberg, F. E.; Gilchrist, J. H.; Harrison, A. T.;
Fuller, D. J.; Collum, D. B. J. Am. Chem. Soc. 1991, 113, 5751-7. (h)
Barr, D.; Doyle, M. J.; Mulvey, R. E.; Raithby, P. R.; Reed, D.; Snaith, R.;
Wright, D. S. J. Chem. Soc., Chem. Commun. 1989, 318. (i) Raithby, P.
R.; Reed, D.; Snaith, R.; Wright, D. S. Angew. Chem., Int. Ed. Engl. 1991,
30, 1011.
of [15N,15N′]TMEDA and its use in the solvation studies of
[6Li]-n-butyllithium (n-BuLi) in toluene-d8 at -110 °C using
6Li and 15N NMR.
We prepared [15N,15N′]TMEDA in three steps starting from
[15N]potassium phthalimide,6 I, which was reacted with 1,2-
dibromoethane at 170-180 °C for 12 h to yield [15N,15N′]-
diphthalimidoethane, II (Scheme 1).7 Alkaline hydrolysis of
II lead to [15N,15N′]ethylenediamine (EDA), which was subse-
quently isolated as the [15N,15N′]EDA‚2HCl salt, III. The key
(6) Purchased from Aldrich Chemical Co.; 98% isotopic enrichment.
(7) Modified from the reported procedure: Salzberg, P. L.; Supniewski,
J. W. Organic Syntheses; Wiley: New York, 1941; Collect. Vol. I, pp 119-
21. Other procedures have been published, see: Soai, K.; Ookawa, A.;
Kato, K. Bull. Chem. Soc. Jpn. 1982, 55, 1671-72. Landini, D.; Rolla, F.
Synthesis 1976, 6, 389-91.
(5) (a) Lucht, B. L.; Collum, D. B. J. Am. Chem. Soc. 1996, 118, 3529-
30. (b) Lucht, B. L.; Collum, D. B. J. Am. Chem. Soc. 1996, 118, 2217-
25. (c) Falcone, M. A. M.S. Thesis, John Carroll University, University
Heights, OH 44118, 1996.
S0002-7863(97)00557-X CCC: $14.00 © 1997 American Chemical Society