10.1002/anie.201908299
Angewandte Chemie International Edition
COMMUNICATION
products is suitable for subsequent synthetic derivatizations
including carbon–carbon bond formation.
analogous sequential procedure using ethyl (Z)-3-iodoacrylate
also afforded the conjugated ester 10.
PhBr
OH
(4.5 equiv)
Acknowledgements
Ph
Ph
KOH, H2O
DCE/toluene
28 °C, 3 h
9 77%, 94% ee
E/Z = >95:5
This work was supported by MEXT [Grants-in-Aids for Scientific
Research (S) (15H05756)] and ISHIZUE 2019 of Kyoto
University Research Development Program. We thank Mr. J.
Nakahashi (Kyoto Univ.) for his contribution at a preliminary
stage.
[PdI]2 (5.0 mol %)
PhCHO
4a
(R)-TRIP (5.0 mol%)
+
Bpin
DCE/toluene
20 °C, 17 h
Me
I
Bpin
CO2Et
OH
3a
(4.3 equiv)
Ph
Keywords: allylation • asymmetric synthesis • double-bond
(2.0 equiv)
KOH, H2O
DCE/toluene
40 °C, 8 h
CO2Et
transposition • homoallylic compounds • palladium
10 73%, 95% ee
E/Z = 90:10
[1]
[2]
M. Yus, J. C. González-Gómez, F. Foubelo, Chem. Rev. 2013, 113,
5595.
Scheme 2. Suzuki-Miyaura cross-coupling by a one-pot sequence.
a) D. G. Hall, H. Lachance, Allylboration of Carbonyl Compounds,
Wiley, Hoboken, New Jersey, 2012. See also: b) J. Feng, Z. A. Kasun,
M. J. Krische, J. Am. Chem. Soc. 2016, 138, 5467.
The boryl group remaining in the homoallylic alcohols could
be exploited for various synthetic transformations other than a
cross-coupling reaction (Scheme 3). Treatment of 5aa with an
excess amount (4.0 equiv) of CuCl2 resulted in the formation of
alkenyl chloride 11 with its geometrical integrity maintained (E/Z
>95:5).[26] TBS protection of the hydroxy group of 5aa[27]
followed by oxidation of the B–C bond with NaBO3 afforded g-
siloxy aldehyde 12, which is a common intermediate for the
synthesis of pyrrolidine sedum alkaloids, (–)-pyrrolsedamine
and (+)-pyrrolallosedamine.[28] (–)-g-Dodecalactone 13, originally
isolated from rove beetles as a defensive secretion, was
stereoselectively synthesized from 5ia through sequential
double oxidation with NaBO3 and PCC.[29]
[3]
[4]
For a recent review on chiral allylic boron reagents, see: C. Diner, K. J.
Szabó, J. Am. Chem. Soc. 2017, 139, 2.
For enantioselective synthesis of b-metalloid-substituted homoallylic
alcohols, see: [B] a) M. Chen, W. R. Roush, J. Am. Chem. Soc. 2013,
135, 9512; [Si] b) M. Binanzer, G. Y. Fang, V. K. Aggarwal, Angew.
Chem. Int. Ed. 2010, 49, 4264; Angew. Chem. 2010, 122, 4360; c) M.
Chen, W. R. Roush, Org. Lett. 2011, 13, 1992; d) P. Barrio, E.
Rodríguez, K. Saito, S. Fustero, T. Akiyama, Chem. Commun. 2015,
51, 5246.
[5]
[6]
For enantioselective synthesis of d-metalloid-substituted homoallylic
alcohols, see: [Si] a) M. Chen, W. R. Roush, Org. Lett. 2013, 15, 1662;
[Sn] b) M. Chen, W. R. Roush, J. Am. Chem. Soc. 2011, 133, 5744.
For recent other examples, see: a) F. Peng, D. G. Hall, J. Am. Chem.
Soc. 2007, 129, 3070; b) G. E. Ferris, K. Hong, I. A. Roundtree, J. P.
Morken, J. Am. Chem. Soc. 2013, 135, 2501; c) T. S. N. Zhao, J. Zhao,
K. J. Szabó, Org. Lett. 2015, 17, 2290; d) J. Zhao, K. J. Szabó, Angew.
Chem. Int. Ed. 2016, 55,1502; Angew. Chem. 2016, 128, 1524; e) L.
Mao, R. Bertermann, K. Emmert, K. J. Szabó, T. B. Marder, Org. Lett.
2017, 19, 6586; f) M. Wang, S. Gao, M. Chen, Org. Lett. 2019, 21,
2151.
CuCl2
OH
OH
Bpin
Cl
Ph
Ph
MeOH/H2O
5aa
11 86%, 95% ee
E/Z >95:5
i) TBSCl
imidazole
Me
OH
ref. 28
OTBS
Ph
5aa[27]
N
[7]
[8]
M. Chen, D. H. Ess, W. R. Roush, J. Am. Chem. Soc. 2010, 132, 7881.
a) T. Miura, Y. Nishida, M. Murakami, J. Am. Chem. Soc. 2014, 136,
6223; b) T. Miura, J. Nakahashi, M. Murakami, Angew. Chem. Int. Ed.
2017, 56, 6989; Angew. Chem. 2017, 129, 7093; c) T. Miura, J.
Nakahashi, W. Zhou, Y. Shiratori, S. G. Stewart, M. Murakami, J. Am.
Chem. Soc. 2017, 139, 10903; d) T. Miura, J. Nakahashi, T. Sasatsu,
M. Murakami, Angew. Chem. Int. Ed. 2019, 58, 1138; Angew. Chem.
2019, 131, 1150.
CHO
ii) NaBO3
Ph
12 71% (2 steps)
(+)-pyrrolallosedamine
96% ee
OH
O
OH
i) NaBO3
ii) PCC
O
O
Bpin
C8H17
[9]
For related reactions involving double-bond transposition of precursory
(alkenyl)boron compounds, see: a) Y. Yamamoto, T. Miyairi, T.
Ohmura, N. Miyaura, J. Org. Chem. 1999, 64, 296; b) L. Lin, K.
Yamamoto, S. Matsunaga, M. Kanai, Angew. Chem. Int. Ed. 2012, 51,
10275; Angew. Chem. 2012, 124, 10421; c) R. Hemelaere, F.
Carreaux, B. Carboni, Chem. Eur. J. 2014, 20, 14518; d) F. Weber, M.
Ballmann, C. Kohlmeyer, G. Hilt, Org. Lett. 2016, 18, 548; e) B. M.
Trost, J. J. Cregg, N. Quach, J. Am. Chem. Soc. 2017, 139, 5133; f) J.
Park, S. Choi, Y. Lee, S. H. Cho, Org. Lett. 2017, 19, 4054; g) S. Gao,
J. Chen, M. Chen, Chem. Sci. 2019, 10, 3637.
5ia
C8H17
C8H17
13 53% (2 steps)
84% ee
(–)-γ-Dodecalactone
Scheme 3. Synthetic transformations of d-boryl-substituted homoallylic
alcohols. PCC = pyridinium chlorochromate.
In summary, we have developed an efficient method for the
diastereo- and enantioselective synthesis of (E)-d-boryl-
substituted anti-homoallylic alcohols via 1,1-di(boryl)alk-1-enes
from terminal alkynes. The use of terminal alkynes as the
starting materials is a key advantage to our method, presenting
better chances of application to synthetic enterprises.
Furthermore, the alkenylboronic ester element remaining in the
[10] For
a recent review on tandem processes involving double-bond
transposition, see: a) H. Sommer, F. Juliá-Hernández, R. Martin, I.
Marek, ACS Cent. Sci. 2018, 4, 153. For a recent example, see: b) H.
Sommer, T. Weissbrod, I. Marek, ACS Catal. 2019, 9, 2400.
[11] P. Jain, J. C. Antilla, J. Am. Chem. Soc. 2010, 132, 11884.
This article is protected by copyright. All rights reserved.