Notes and references
{ DBPG?4H2O: monoclinic, C2/c, a = 16.0309(12), b = 10.6848(8), c =
3
˚
˚
7.3246(5) A, b = 111.4500(10)u, V = 1167.71(15) A , Z = 4, R1 = 0.0198,
wR2 = 0.0502, T = 100 K. DBPG: orthorhombic, Pbcn, a = 5.4011(5), b =
3
˚
˚
12.8974(13), c = 10.9478(11) A, V = 762.63(13) A , Z = 4, R1 = 0.0298,
wR2 = 0.0794, T = 298 K. Structure solution and refinement were carried
out with Bruker SHELXTL. See ESI for further crystallographic details
and crystal data of DBPG?4H2O at 298 K.{ CCDC 294904–294906. For
crystallographic data in CIF or other electronic format see DOI: 10.1039/
b600348f
§ Ref. 3i and unpublished crystal structures in this series of compounds.
1 (a) R. Ludwig, Angew. Chem., Int. Ed., 2001, 40, 1808; (b) J. M. Ugalde,
I. Alkorta and J. Elguero, Angew. Chem., Int. Ed., 2000, 39, 717; (c)
D. C. Clary, D. M. Benoit and T. van Mourik, Acc. Chem. Res., 2000,
33, 441; (d) U. Buck and F. Huisken, Chem. Rev., 2000, 100, 3863; (e)
G. A. Jeffrey, An Introduction to Hydrogen Bonding, OUP, Oxford,
1997.
2 The News Staff, Science, 2004, 306, 2013.
3 (a) N. S. Oxtoby, A. J. Blake, N. R. Champness and C. Wilson, Chem.–
Eur. J., 2005, 11, 4643 (tetramer, chain, sheet); (b) B. -Q. Ma, H.-L. Sun
and S. Gao, Chem. Commun., 2004, 2220 (pentamer); (c) Y.-C. Liao,
Y.-C. Jiang and S.-L. Wang, J. Am. Chem. Soc., 2005, 127, 12794
(hexamer); (d) U. Mukhopadhyay and I. Bernal, Cryst. Growth Des.,
2005, 5, 1687 (hexamer); (e) X.-M. Zhang, R.-Q. Fang and H.-S. Wu,
Cryst. Growth Des., 2005, 5, 1335 (hexamer tape); (f) L. J. Barbour,
G. W. Orr and J. L. Atwood, Nature, 1998, 393, 671 (10-mer cluster); (g)
B.-Q. Ma, H. -L. Sun and S. Gao, Chem. Commun., 2005, 2336 (book-
shaped hexamer); (h) B. Sreenivasulu and J. J. Vittal, Angew. Chem., Int.
Ed., 2004, 43, 5769 (helix); (i) B. K. Saha and A. Nangia, Chem.
Commun., 2005, 3024 (helix); (j) K. Raghuraman, K. K. Katti,
L. J. Barbour, N. Pillarsetty, C. L. Barnes and K. V. Katti, J. Am.
Chem. Soc., 2003, 125, 6955 (18-mer cluster); (k) P. S. Sidhu,
K. A. Udachin and J. A. Ripmeester, Chem. Commun., 2004, 1358
(chain); (l) R. Luna-Garcia, B. M. Damia´n-Murillo, V. Barba, H. Ho¨pfl,
H. I. Beltra´n and L. S. Zamudio-Rivera, Chem. Commun., 2005, 5527
(hexamer tape); (m) J. L. Atwood, L. J. Barbour, T. J. Ness, C. L. Raston
and P. L. Raston, J. Am. Chem. Soc., 2001, 123, 7192 (octamer); (n)
M. Zuhayra, W. U. Kampen, E. Henze, Z. Soti, L. Zsolnai, G. Huttner
and F. Oberdorfer, J. Am. Chem. Soc., 2006, 128, 424 (tetramer).
4 M. Losada and S. Leutwyler, J. Chem. Phys., 2002, 117, 2003. The
relative energies vary slightly depending on the level of calculation and/
or the spectroscopic method used (ref. 1).
Fig. 4 Powder X-ray diffraction plots. (a) Anhydrous DBPG (simu-
lated); (b) expulsion of water from the tetrahydrate (experimental); (c)
rehydration of the anhydrous form with water vapor (experimental); (d)
DBPG?4H2O (simulated).
molecule resides on the 2-fold rotation axis and phenol protons are
disordered over two sites with 0.5 occupancy. The packing fraction
of DBPG?4H2O is 68.3% with water occupying 35.8% of the
crystal volume; the DBPG packing fraction is 73.7%. Stronger H
bonding in the tetrahydrate structure (see ESI for distances at
298 K{) compared to the anhydrous form is the reason for water
inclusion despite a lower packing fraction in the hydrate crystal.
Whereas the inter-halogen geometry15 is of type I in the hydrate
structure, polarization-induced type II contacts are present in the
anhydrous form (Fig. 3b, c). The greater significance of halogen
bonding over hydrogen bonding in anhydrous DBPG compared
to the tetrahydrate structure is consistent with ongoing experi-
ments.§ The halogen atom plays a significant role in these strong H
¯
bonded structures because diiodophloroglucinol (P1) has a
5 P. Rodr´ıguez-Cuamatzi, G. Vargas-D´ıaz and H. Ho¨pfl, Angew. Chem.,
Int. Ed., 2004, 43, 3041; K.-M. Park, R. Kuroda and T. Iwamoto,
Angew. Chem., Int. Ed. Engl., 1993, 32, 884.
6 A guest-free form of TATM was recently reported. P. S. Sidhu,
G. D. Enright, K. A. Udachin and J. A. Ripmeester, Chem. Commun.,
2005, 2092. Water chains in the TATM host are reported in ref. 3k.
7 (a) L. Infantes and S. Motherwell, CrystEngComm, 2002, 4, 454; (b)
L. Infantes, J. Chisholm and S. Motherwell, CrystEngComm, 2003, 5,
480.
8 F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 380.
9 M. Mascal, L. Infantes and J. Chisholm, Angew. Chem., Int. Ed., 2006,
45, 32.
10 F. Seela, T. Wiglenda, H. Rosemeyer, H. Eickmeier and H. Reuter,
Angew. Chem., Int. Ed., 2002, 41, 603 (ODIMAP); A. Michaelides,
S. Skoulika, E. G. Bakalbassis and J. Mrozinski, Cryst. Growth Des.,
2003, 3, 487 (PIZPIX01).
11 A. L. Gillon, N. Feeder, R. J. Davey and R. Storey, Cryst. Growth Des.,
2003, 3, 663.
12 M. Henry, F. Taulelle, T. Loiseau, L. Beitone and G. Fe´rey, Chem.–Eur.
J., 2004, 10, 1366.
13 M. Henry, ChemPhysChem, 2002, 3, 607.
14 R. Miyamoto, R. T. Hamazawa, M. Hirotsu, T. Nishioka, I. Kinoshita
and L. J. Wright, Chem. Commun., 2005, 4047.
15 B. K. Saha, R. K. R. Jetti, L. S. Reddy, S. Aitipamula and A. Nangia,
Cryst. Growth Des., 2005, 5, 887.
different crystal packing.
Dehydration of the water-filled channels at 90 uC for 30 min at
0.2 Torr gave a microcrystalline solid whose powder XRD pattern
matches with simulated peaks from the Pbcn X-ray crystal
structure (Fig. 4). When the dehydrated material was left overnight
in a chamber saturated with water vapour it completely converts to
the tetrahydrate form (PXRD, TGA). Thus, the organic host
DBPG functions like a supramolecular sponge:16 it readily uptakes
moisture and releases the guest under relatively mild conditions
(,100 uC). The IR spectra (KBr) of anhydrous and hydrated
DBPG show similar broad peaks for the OH stretch in the range
3000–3500 cm21 due to H bonded phenol and water aggregates,
making it difficult to identify the peaks from water clusters
(compare with hexagonal ice at 3220 cm21 and liquid water at
3280 cm21). Cyclic water hexamers are prototypical structural
motifs in ice polymorphs Ic, Ih, proton-disordered ice II, and bulk
water. Cubic ice is stable below 2120 uC but undergoes a phase
transition to normal hexagonal ice above 280 uC. The absence of
a phase transition in DBPG?4H2O between 100 and 298 K
provides a 1D ice-like structural motif for variable-temperature
diffraction and spectroscopy experiments.
16 The word ‘sponge’ has been used previously for a host lattice. M. P.
Byrn, C. J. Curtis, Y. Hsiou, S. I. Khan, P. A. Sawin, R. Tsurumi and
C. E. Strouse, J. Am. Chem. Soc., 1990, 112, 1865. We feel that the word
is appropriate here because DBPG exhibits facile uptake and loss of
water like a sponge.
A.N. thanks the DST for funding (SR/S5/OC-02/2002) and
B.K.S. thanks the CSIR for a fellowship. DST and UGC are
thanked for the X-ray CCD diffractometer and the UPE program.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 1825–1827 | 1827