the isopropanol and the water molecules localised are disordered
and in some cases have partial assigned occupancies. Distances
and thermal displacement parameters for these anions/solvent
molecules are restrained. After final refinement there are residual
voids which probably contain highly disordered isopropanol and
water molecules which could not be clearly identified. The detected
highest peak and deepest hole of the residual electron densities
are localized close to one of the disordered solvent molecules
but could not be identified and refined as disordered solvent.
Applying SQUEEZE (Platon)69 did not give significant data
improvements resulting in similar R-values as modeling disordered
solvent molecules.
4 S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100, 853–
907.
5 M. Fujita, Chem. Soc. Rev., 1998, 27, 417–425.
6 J. A. R. Navarro and B. Lippert, Coord. Chem. Rev., 2001, 222, 219–
250.
7 B. J. Holliday and C. A. Mirkin, Angew. Chem., Int. Ed., 2001, 40,
2022–2043.
8 M. Fujita, M. Tominaga, A. Hori and B. Therrien, Acc. Chem. Res.,
2005, 38, 369–378.
9 D. Fiedler, D. H. Leung, R. G. Bergman and K. N. Raymond, Acc.
Chem. Res., 2005, 38, 349–358.
10 M. Fujita, J. Yazaki and K. Ogura, J. Am. Chem. Soc., 1990, 112,
5645–5647.
11 Z. Qin, M. C. Jennings and R. J. Puddephatt, Inorg. Chem., 2002, 41,
3967–3974.
12 S.-S. Sun, J. A. Anspach, A. J. Lees and P. Y. Zavalij, Organometallics,
2002, 21, 685–693.
13 F. Wurthner and A. Sautter, Chem. Commun., 2000, 445–446.
14 R. V. Slone, K. D. Benkstein, S. Belanger, J. T. Hupp, I. A. Guzei and
A. L. Rheingold, Coord. Chem. Rev., 1998, 171, 221–243.
15 R. V. Slone, D. I. Yoon, R. M. Calhoun and J. T. Hupp, J. Am. Chem.
Soc., 1995, 117, 11813–11814.
16 D. L. Caulder and K. N. Raymond, Acc. Chem. Res., 1999, 32, 975–982.
17 A. V. Davis, R. M. Yeh and K. N. Raymond, Proc. Natl. Acad. Sci.
USA, 2002, 99, 4793–4796.
18 R. W. Saalfrank and I. Bernt, Curr. Opin. Solid State Mater. Sci., 1998,
3, 407–413.
Crystal data for 3 at 100 K. C94H84Fe2N8O2P4Pd2·4C1F3O3S1·
−1
¯
1C1H2Cl2·3H2O (without hydrogen atoms), 2535.28 g mol , P1,
◦
˚
˚
˚
a = 15.828(3) A, b = 16.901(3) A, c = 20.704(8) A, a = 71.936(4) ,
b = 86.141(4)◦, c = 87.923(4)◦, Z = 2, qcalcd = 1.603 Mg m−3, R1 =
0.0973 (0.1402), wR2 = 0.2504 (0.2967), for 25830 reflections with
I > 2r(I) (for 17 616 reflections [Rint: 0.0759] with a total measured
of 55 822 reflections), goodness-of-fit on F2 = 1.056, largest
−3
˚
diff. peak (hole) = 2.889 (−2.727) e A . The crystal contains
disordered water molecules with partial assigned occupancies. The
triflate counter-anions are also partly disordered and are showing
large thermal displacement parameters.
19 R. W. Saalfrank, E. Uller, B. Demleitner and I. Bernt, Struct. Bonding,
2000, 96, 149–175.
20 R. W. Saalfrank and B. Demleitner, Persp. Supramol. Chem., 1999, 5,
1–51.
Variable temperature 1H-NMR experiments
21 F. M. Raymo and J. F. Stoddart, Templated Org. Synth., 2000, 75–104.
22 D. H. Busch, A. L. Vance and A. G. Kolchinski, Comp. Supramol.
Chem., 1996, 9, 1–42.
Variable temperature NMR spectroscopy experiments of pallada-
23 S. Anderson, H. L. Anderson and J. K. M. Sanders, Acc. Chem. Res.,
1993, 26, 469–475.
macrocycle 1 were carried out by dissolving ca. 2 mg of the complex
1
in DMSO-D6, under Ar. H NMR spectra of this sample were
24 C. O. Dietrich-Buchecker and J. P. Sauvage, Chem. Rev., 1987, 87, 795–
810.
recorded at increasing temperature at intervals of 10 K starting
from 300 K up to 350 K and back again to the initial temperature.
The 31P NMR spectra at initial (300 K), intermediate (350 K) and
final (300 K) temperatures were also measured to verify complex
integrity throughout the whole process.
25 S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders and J. F.
Stoddart, Angew. Chem., Int. Ed., 2002, 41, 899–952.
26 J.-M. Lehn and A. V. Eliseev, Science, 2001, 291, 2331–2332.
27 G. R. L. Cousins, S.-A. Poulsen and J. K. M. Sanders, Curr. Opin.
Chem. Biol., 2000, 4, 270–279.
28 P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M.
Sanders and S. Otto, Chem. Rev., 2006, 106, 3652–3711.
29 R. Vilar, Angew. Chem., Int. Ed., 2003, 42, 1460–1477.
30 P. D. Beer and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 486–
516.
31 S. Otto and S. Kubik, J. Am. Chem. Soc., 2003, 125, 7804–7805.
32 B. Hasenknopf, J.-M. Lehn, N. Boumediene, A. Dupont-Gervais, A.
Van Dorsselaer, B. Kneisel and D. Fenske, J. Am. Chem. Soc., 1997,
119, 10956–10962.
33 C. S. Campos-Fernandez, B. L. Schottel, H. T. Chifotides, J. K. Bera, J.
Bacsa, J. M. Koomen, D. H. Russell and K. R. Dunbar, J. Am. Chem.
Soc., 2005, 127, 12909–12923.
34 B. Olenyuk, A. Fechtenkotter and P. J. Stang, J. Chem. Soc., Dalton
Trans., 1998, 1707–1728.
35 M. Ferrer, L. Rodriguez and O. Rossell, J. Organomet. Chem., 2003,
681, 158–166.
36 A. Sautter, D. G. Schmid, G. Jung and F. Wuerthner, J. Am. Chem.
Soc., 2001, 123, 5424–5430.
37 M. Schweiger, S. R. Seidel, A. M. Arif and P. J. Stang, Inorg. Chem.,
2002, 41, 2556–2559.
1H-NMR spectroscopic titrations of 1 with different anions
The following procedure is the one used for the titration with
[H2PO4]−. An analogous procedure was used for all the other
anions. All operations were carried out in an inert argon atmo-
sphere. A host stock solution was prepared by dissolving 1 (4.1 mg,
0.002 mmol) in d6-DMSO (2 ml). An aliquot of this solution (1.2
ml) was used to dissolve [NBu4][H2PO4] (6.6 mg, 0.02 mmol) to
prepare the guest stock solution employed for titrating the metallo-
macrocycle. An initial aliquot (0.5 ml) of the host stock solution
1
was transferred into an NMR tube and its H-NMR spectrum
determined. Increasing volumes of the guest stock solution were
added with a micro-syringe into the same sample to reach, at the
end, ca. 12 equivalents. The 1H-NMR spectra of the sample after
each addition were measured and the chemical shifts of the urea
and aromatic protons recorded. The 31P NMR spectra of selected
samples (including the initial and final points) were measured
to confirm the integrity of the complex throughout the whole
procedure.
38 M. Schweiger, S. R. Seidel, A. M. Arif and P. J. Stang, Angew. Chem.,
Int. Ed., 2001, 40, 3467–3469.
39 M. Fujita, O. Sasaki, T. Mitsuhashi, T. Fujita, J. Yazaki, K. Yamaguchi
and K. Ogura, Chem. Commun., 1996, 1535–1536.
40 P. J. Stang, D. H. Cao, S. Saito and A. M. Arif, J. Am. Chem. Soc.,
1995, 117, 6273–6283.
41 M. Fujita, S. Nagao, M. Iida, K. Ogata and K. Ogura, J. Am. Chem.
Soc., 1993, 115, 1574–1576.
42 M. Fujita, J. Yazaki and K. Ogura, Tetrahedron Lett., 1991, 32, 5589–
5592.
References
1 S. R. Seidel and P. J. Stang, Acc. Chem. Res., 2002, 35, 972–983.
2 M. Fujita, Struct. Bonding, 2000, 96, 177–201.
3 K. Biradha and M. Fujita, Adv. Supramol. Chem., 2000, 6, 1–39.
43 A. Sautter, D. G. Schmid, G. Jung and F. Wurthner, J. Am. Chem. Soc.,
2001, 123, 5424–5430.
3524 | Dalton Trans., 2007, 3516–3525
This journal is
The Royal Society of Chemistry 2007
©