Communication
ChemComm
This study was supported by the Delaware COBRE programs,
with grants from the NIGMS (P20GM104316 and 5 P30
GM110758-02), the Susan G. Komen Foundation made possible
through funding from American Airlines (CCR16377327), the
NCI (P30CA093373), the Burroughs Wellcome Fund (1006787),
and the CIRM (RN3-06460).
Conflicts of interest
Fig. 5 Fluorescent cyclic RGD labeling of MDA-MB-231 cells. AF488-DIBO
was conjugated to the azide handle presented by the cyclic RGD through a
SPAAC reaction. (A) Cyclic RGD-AF488 (CYC) labeled a significant portion of
There are no conflicts to declare.
the cell population in 2D culture, with few labeled cells observed with the free References
dye (free, negative control), demonstrating the ability to target the surface of
cells by conjugation to cyclic RGD. Representative images of cells incubated
1
2
W. Tang and M. L. Becker, Chem. Soc. Rev., 2014, 43, 7013–7039.
T. G. Kapp, F. Rechenmacher, S. Neubauer, O. V. Maltsev, E. A.
Cavalcanti-Adam, R. Zarka, U. Reuning, J. Notni, H. J. Wester,
C. Mas-Moruno, J. Spatz, B. Geiger and H. Kessler, Sci. Rep., 2017,
with (B) AF-DIBO and (C) cyclic RGD-AF488 for 4 h (scale bars, 50 mm)
(**p-value o 0.01).
7, 39805.
3
E. Lieb, M. Hacker, J. Tessmar, L. A. Kunz-Schughart, J. Fiedler,
C. Dahmen, U. Hersel, H. Kessler, M. B. Schulz and A. Gopferich,
Biomaterials, 2005, 26, 2333–2341.
4 K. Miyano, H. Cabral, Y. Miura, Y. Matsumoto, Y. Mochida,
H. Kinoh, C. Iwata, O. Nagano, H. Saya, N. Nishiyama, K. Kataoka
and T. Yamasoba, J. Controlled Release, 2017, 261, 275–286.
M. Oba, S. Fukushima, N. Kanayama, K. Aoyagi, N. Nishiyama,
H. Koyama and K. Kataoka, Bioconjugate Chem., 2007, 18, 1415–1423.
W. Xiao, Y. Wang, E. Y. Lau, J. Luo, N. Yao, C. Shi, L. Meza, H. Tseng,
Y. Maeda, P. Kumaresan, R. Liu, F. C. Lightstone, Y. Takada and
K. S. Lam, Mol. Cancer Ther., 2010, 9, 2714–2723.
7 J. Zhu, C. Tang, K. Kottke-Marchant and R. E. Marchant, Bioconjugate
Chem., 2009, 20, 333–339.
J. Wermuth, S. L. Goodman, A. Jonczyk and H. Kessler, J. Am. Chem.
Soc., 1997, 119, 1328–1335.
9 S. Petersen, J. M. Alonso, A. Specht, P. Duodu, M. Goeldner and
A. del Campo, Angew. Chem., Int. Ed. Engl., 2008, 47, 3192–3195.
0 M. Wirkner, S. Weis, V. San Miguel, M. Alvarez, R. A. Gropeanu,
M. Salierno, A. Sartoris, R. E. Unger, C. J. Kirkpatrick and A. del
Campo, ChemBioChem, 2011, 12, 2623–2629.
1 Z. Guo, X. Zhou, M. Xu, H. Tian, X. Chen and M. Chen, Biomater.
Sci., 2017, 5, 2501–2510.
2 A. Roxin and G. Zheng, Future Med. Chem., 2012, 4, 1601–1618.
cyclized peptide, enabled by the orthogonal reactions for cyclization
and covalent immobilization. With this approach now established,
this 3D culture system could be used in future investigations of
v 3
disease progression, including the role a b integrin binding, with
5
23
cyclized RGD, in metastatic disease.
6
Beyond cell culture, targeting of integrins has been utilized
for selective delivery of therapeutics and the identification of
specific cell types for diagnostic purposes, broadly termed
theranostics. In particular, several studies have shown that
RGD can be used to target the surface of cancer cells, osteoclasts,
and endothelial cells for delivery of therapeutics or for cell-specific
8
4
fluorescence imaging. To demonstrate the ability to facilely
1
modify the azido-RGD peptide synthesized here for such applica-
tions, we clicked on an alkyne-functionalized fluorescent tag
1
(Alexa Fluor 488 4-dibenzocyclooctynol, AF488-DIBO) using SPAAC
chemistry (Fig. 1C). The resulting fluorescently-tagged cyclic
1
peptide was cultured with MDA-MB-231s. Importantly, cells cul- 13 G. K. T. Nguyen and C. T. T. Wong, J. Biochem. Chem. Sci., 2017,
2
017, 1–13.
4 A. Zorzi, K. Deyle and C. Heinis, Curr. Opin. Chem. Biol., 2017, 38,
4–29.
tured with the AF488-cyclic RGD exhibited robust labeling of the
cell membrane (91 Æ 3%), whereas few cells were observed as
1
2
labeled when cultured with the free AF488-DIBO (control) (7 Æ 4%) 15 M. P. Gamcsik, M. S. Kasibhatla, S. D. Teeter and O. M. Colvin,
Biomarkers, 2012, 17, 671–691.
(
p-value o 0.01) (Fig. 5). These data demonstrate the potential that
1
6 G. Marino, U. Eckhard and C. M. Overall, ACS Chem. Biol., 2015, 10,
the cyclic RGD affords for conjugation with molecules of interest
1754–1764.
for targeting the cell surface. While not demonstrated here, the 17 A. A. Aimetti, R. K. Shoemaker, C. C. Lin and K. S. Anseth, Chem.
Commun., 2010, 46, 4061–4063.
8 K. C. Koehler, D. L. Alge, K. S. Anseth and C. N. Bowman, Int. J. Pept.
Res. Ther., 2013, 19, 265–274.
azide handle affords the opportunity to use CuAAC chemistry
or conversion to other functional handles (e.g., thiols) after
cyclization.
In the present study, we demonstrated a facile method to
synthesize cyclic RGD peptides with a chemically active handle
1
19 R. A. Turner, A. G. Oliver and R. S. Lokey, Org. Lett., 2007, 9,
011–5014.
0 F. Wang, Y. Li, Y. Shen, A. Wang, S. Wang and T. Xie, Int. J. Mol. Sci.,
013, 14, 13447.
5
2
2
through orthogonal click reactions. A photoinitiated thiol–ene 21 H. Ma, P. Hao, L. Zhang, C. Ma, P. Yan, R.-F. Wang and C.-L. Zhang,
Eur. Rev. Med. Pharmacol. Sci., 2016, 20, 613–619.
2 S. B. Rahane, R. M. Hensarling, B. J. Sparks, C. M. Stafford and
D. L. Patton, J. Mater. Chem., 2012, 22, 932–943.
reaction was utilized for cyclization in solution, which yielded
azide-functionalized cyclic peptide on scales relevant for the
2
fabrication of bulk materials. The utility of the azide functio- 23 S. Takayama, S. Ishi, T. Ikeda, S. Masamura, M. Doi and
M. Kitajima, Anticancer Res., 2005, 25, 79–84.
4 D. M. Beauvais, B. J. Ell, A. R. McWhorter and A. C. Rapraeger, J. Exp.
Med., 2009, 206, 691–705.
nalized cyclic RGD was demonstrated for conjugation to hydro-
gels and to fluorophores. Overall, the method presented may
2
prove broadly useful in a variety of applications and could be 25 C. Guo, H. Kim, E. M. Ovadia, C. M. Mourafetis, M. Yang, W. Chen
and A. M. Kloxin, Acta Biomater., 2017, 56, 80–90.
easily modified for a range of systems, including use of different
integrin-binding peptide sequences, and for functionalization of
surfaces, 3D matrices, or theranostics.
2
6 M. C. Cheang, S. K. Chia, D. Voduc, D. Gao, S. Leung, J. Snider,
M. Watson, S. Davies, P. S. Bernard, J. S. Parker, C. M. Perou,
M. J. Ellis and T. O. Nielsen, J. Natl. Cancer Inst., 2009, 101, 736–750.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2018