6
650
T. Ogata et al. / Tetrahedron Letters 48 (2007) 6648–6650
4. (a) Fujieda, H.; Kanai, M.; Kambara, T.; Iida, A.;
n
-BuLi (0.1 equiv)
NMe
DIA (0.15 equiv)
Tomioka, K. J. Am. Chem. Soc. 1997, 119, 2060–2061;
(b) Fujihara, H.; Nagai, K.; Tomioka, K. J. Am. Chem.
Soc. 2000, 122, 12055–12056; (c) Kuriyama, M.; Soeta, T.;
Hao, X.; Chen, Q.; Tomioka, K. J. Am. Chem. Soc. 2004,
126, 8128–8129.
1b
5b
+
THF
–
78 °C to rt
5 min
6
5%
b
1
94%
65%
32%
5
h
34%
67%
5. Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron:
Asymmetry 2005, 16, 2833–2891.
24 h
6
. Alkoxyamination and azidation: (a) Guerin, D. J.; Miller,
S. J. J. Am. Chem. Soc. 2002, 124, 2134–2136; (b)
Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am.
Chem. Soc. 2003, 125, 16178–16179; (c) Sibi, M. P.;
Prabagaran, N.; Ghorpade, S. G.; Jasperse, C. P. J. Am.
Chem. Soc. 2003, 125, 11796–11797; (d) Palomo, C.;
Oiarbide, M.; Halder, R.; Kelso, M.; G o´ mez-Bengoa, E.;
Garc ´ı a, J. M. J. Am. Chem. Soc. 2004, 126, 9188–9189; (e)
Hamashima, Y.; Somei, H.; Shimura, Y.; Tamura, T.;
Sodeoka, M. Org. Lett. 2004, 6, 1861–1864; (f) Taylor, M.
S.; Zalatan, D. N.; Lerchner, A. M.; Jacobsen, E. N. J.
Am. Chem. Soc. 2005, 127, 1313–1317.
n
-BuLi (0.4 equiv)
DIA (0.6 equiv)
6
b
b
5b
9%
+
+
6b
87%
THF
78 °C to rt, 15 h
–
n
-BuLi (0.4 equiv)
DIA (0.2 equiv)
5
5b
racemic-6b
9
1% ee
THF
11%, 25% ee
80%
–
78 °C to 50 °C, 3 h
Scheme 3. Hydroamination of 1b and equilibrium in THF.
7
. Reviews: (a) Mueller, T. E.; Beller, M. Chem. Rev. 1998,
9
8, 675–703; (b) Seayad, J.; Tillack, A.; Hartung, C. G.;
ratio of 32% and 67% yields. This indicates that 5b is
kinetic product and 6b is thermodynamic product. In
fact, treatment of 6b under the amination conditions
in THF gave 5b in 9% yield along with recovery of 6b.
Similarly, treatment of 5b with 91% ee gave 5b with
decreased 25% ee in 11% yield and racemic-6b in 80%
yield. Attempted isomerization of racemic 5b under the
asymmetric conditions in toluene gave back 5b
unchanged probably because of difficulty in lithiation.
This indicates clearly that kinetic control is operative
in the catalytic asymmetric reaction in toluene.
Beller, M. Adv. Synth. Catal. 2002, 344, 795–812.
8. (a) Beller, M.; Breindl, C. Tetrahedron 1998, 54, 6359–
6368; (b) Seijas, J. A.; V a´ zquez-Tato, M. P.; Entenza, C.;
Mart ´ı nez, M. M.; Onega, M. G.; Veiga, S. Tetrahedron
Lett. 1998, 39, 5073–5076; (c) Ates, A.; Quinet, C. Eur. J.
Org. Chem. 2003, 1623–1626; (d) Trost, B. M.; Tang, W. J.
Am. Chem. Soc. 2003, 125, 8744–8745; (e) van Otterlo, W.
A. L.; Pathak, R.; de Koning, C. B.; Fernandes, M. A.
Tetrahedron Lett. 2004, 45, 9561–9563; (f) Kumar, K.;
Michalik, D.; Castro, I. G.; Tillack, A.; Zapf, A.; Arlt, M.;
Heinrich, T.; B o¨ ttcher, H.; Beller, M. Chem. Eur. J. 2004,
10, 746–757; (g) Khedkar, V.; Tillack, A.; Benisch, C.;
Melder, J.-P.; Beller, M. J. Mol. Catal. A: Chem. 2005,
241, 175–183; Ti: (h) Bexrud, J. A.; Beard, J. D.; Leitch,
D. C.; Schafer, L. L. Org. Lett. 2005, 7, 1959–1962; Pd: (i)
Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 8644–
In conclusion, we have developed lithium-catalyzed
asymmetric hydroamination of aminoalkenes by using
a chiral external Box ligand. Kinetically controlled reac-
tion is operative in preference to thermodynamic equi-
librium. Since the present procedure is simple, further
application is promisingly broad.
8
651; Group 3 metal: (j) Kim, Y. K.; Livinghouse, T.;
Horino, Y. J. Am. Chem. Soc. 2003, 125, 9560–9561; Ca:
k) Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem.
(
Soc. 2005, 127, 2042–2043; Ln: (l) Hao, J.; Marks, T. J.
Organometallics 2006, 25, 4763–4772.
9
. (a) O’Shaughnessy, P. N.; Knight, P. D.; Morton, C.;
Gillespie, K. M.; Scott, P. Chem. Commun. 2003, 1770–
Acknowledgments
1
771; (b) Roesky, P. W.; M u¨ ller, T. E. Angew. Chem., Int.
Ed. 2003, 42, 2708–2710; (c) Hong, S.; Tian, S.; Metz, M.
V.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 14768–
This research was supported by the 21st Century COE
Program ‘Knowledge Information Infrastructure for
Genome Science’ and a Grant-in-Aid for Scientific
Research on Priority Areas ‘Advanced Molecular
Transformations’ from the Ministry of Education,
Culture, Sports, Science and Technology, Japan. T.O.
thanks JSPS for fellowship.
1
4783; (d) Knight, P. D.; Munslow, I.; O’Shaughnessy, P.
N.; Scott, P. Chem. Commun. 2004, 894–895; (e) Martinez,
P. H.; Hultzsch, K. C.; Hampel, F. Chem. Commun. 2006,
21, 2221–2223; (f) Lebeuf, R.; Robert, F.; Schenk, K.;
Landais, Y. Org. Lett. 2006, 8, 4755–4758; (g) Gribkov, D.
V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006,
1
28, 3748–3759; (h) Watson, D. A.; Chiu, M.; Bergman,
R. G. Organometallics 2006, 25, 4731–4733; (i) Wood, M.
C.; Leitch, D. C.; Yeung, C. S.; Kozak, J. A.; Schafer, L.
L. Angew. Chem., Int. Ed. 2007, 46, 354–358.
References and notes
1
0. (a) Doi, H.; Sakai, T.; Iguchi, M.; Yamada, K.; Tomioka,
K. J. Am. Chem. Soc. 2003, 125, 2886–2887; (b) Sakai, T.;
Doi, H.; Kawamoto, Y.; Yamada, K.; Tomioka, K.
Tetrahedron Lett. 2004, 45, 9261–9263; (c) Doi, H.; Sakai,
T.; Yamada, K.; Tomioka, K. Chem. Commun. 2004,
1850–1851; (d) Sakai, T.; Kawamoto, Y.; Tomioka, K. J.
Org. Chem. 2006, 71, 4706–4709; (e) Sakai, T.; Doi, H.;
Tomioka, K. Tetrahedron 2006, 62, 8351–8359.
1
2
3
. Miller, T. M.; Cleveland, D. W. Science 2005, 307, 361–
62.
. France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Chem.
Rev. 2003, 103, 2985–3012.
3
. (a) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169–
196; (b) Noyori, R.; Kitamura, M.; Ohkuma, T. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5356–5362.