Published on Web 01/06/2006
Optimization of the Molecular Orbital Energies of Conjugated
Polymers for Optical Amplification of Fluorescent Sensors
Bin Liu and Guillermo C. Bazan*
Contribution from the Department of Materials and Chemistry and Biochemistry,
Institute for Polymers and Organic Solids, UniVersity of California at Santa Barbara,
Santa Barbara, California 93106
Abstract: Cationic water-soluble poly(fluorene-co-phenylene)s with electron withdrawing or donating
substituents on the conjugated backbone were designed and synthesized. Fluorescence resonance energy
transfer (FRET) experiments between these conjugated polymers and dye-labeled single-stranded DNA
(ssDNA-C*) reveal the importance of matching donor and acceptor orbital energy levels to improve the
sensitization of C* emission. Quenching of polymer fluorescence with ssDNA-C* and differences in C*
emission suggest involvement of photoinduced charge transfer (PCT) as an energy wasting mechanism.
The HOMO and LUMO energy levels of the conjugated polymers and C* serve as a preliminary basis to
understand the competition between FRET and PCT. Dilution of C* in polymer/ssDNA-C* complexes by
addition of ssDNA yields insight into C*‚‚‚C* self-quenching. Under optimized conditions, where there is
no probe self-quenching and minimum PCT, efficient signal amplification is demonstrated despite poor
spectral overlap between polymer and C*.
Introduction
biosensor applications, one relies on CPs with charged pendant
2,7
groups (i.e., conjugated polyelectrolytes). These water soluble
CPs have been used as light harvesting molecules that deliver
excitations to signaling fluorescent dyes attached to biomolecular
probes, thereby providing increased signal intensities and sensi-
Conjugated polymers (CPs) form the basis of new methods
for the trace detection of analytes in a variety of environments.
Their delocalized electronic structure allows for electronic
coupling between optoelectronic segments and efficient intra-
and interchain energy transfer. Important properties, such as
charge transport, conductivity, emission intensity,
exciton migration are easily perturbed by external agents,
leading to substantial changes in measurable signals. For inter-
1
,2
6,8
tivities above those of single molecule reporters. Nonspecific
contacts between nontarget species and the hydrophobic CP
backbone need special attention for attaining selectivity, as these
interactions can lead to misleading interpretations of results.9
3
4
5
2a,2f,2g
and
4
6
rogation in aqueous media, conditions typically required for
(3) (a) Guillet, J. E. Polymer Photophysics and Photochemistry; Cambridge
University Press: Cambridge, 1985. (b) Weber, S. E. Chem. ReV. 1990,
90, 1469. (c) Kauffmann, H. F. Photochemistry and Photophysics; Radek,
(
1) (a) Yang, J. S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864. (b)
Yang, J. S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 5321. (c) Leclerc,
M. AdV. Mater. 1999, 11, 1491. (d) McQuade, D. T.; Pullen, A. E.; Swager,
T. M. Chem. ReV. 2000, 100, 2537. (e) Ewbank, P. C.; Nuding, G.; Suenaga,
H.; McCullough, R. D.; Shinkai, S. Tetrahedron Lett. 2001, 42, 155. (f)
Ho, H. A.; Boissinot, M.; Bergeron, M. G.; Corbeil, G.; Dor e´ , K.; Boudreau,
D.; Leclerc, M. Angew. Chem. 2002, 41, 1548. (g) Kim, I. B.; Erdogan,
B.; Wilson, J. N.; Bunz, U. H. F. Eur. J. Chem. 2004, 10, 6247. (h) Rose,
A; Zhu, Z. G.; Madigan, C. F.; Swager, T. M.; Bulovic, V. Nature 2005,
J. E., Ed.; CRC: Boca Raton, FL, 1990; Vol 2. (d) Scholes, G. D.; Ghiggino,
K. P. J. Chem. Phys. 1994, 101, 1251. (e) Tasch, S.; List, E. J. W.;
Hochfilzer, C.; Leising, G.; Schlichting, P.; Rohr, U.; Geerts, Y.; Scherf,
U.; Mullen, K. Phys. ReV. B 1997, 56, 4479. (f) Nguyen, T. Q.; Wu, J. J.;
Doan, V.; Schwartz, B. J.; Tolbert, S. H. Science 2000, 288, 652. (g)
Pschirer, N. G.; Byrd, K.; Bunz, U. H. F. Macromolecules 2001, 34, 8590.
(h) Beljonne, D.; Pourtois, G.; Silva, C.; Hennebicq, E.; Herz, L. M.; Friend,
R. H.; Scholes, G. D.; Setayesh, S.; M u¨ llen, K.; Br e´ das, J. L. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 10982. (i) Liu, B.; Wang, S.; Bazan, G. C.;
Mikhailovsky, A. J. Am. Chem. Soc. 2003, 125, 13306. (j) Liu, B.; Bazan,
G. C. J. Am. Chem. Soc. 2004, 126, 1942. (k) Hennebicq, E.; Pourtois, G.;
Scholes, G.; Herz, L.; Russell, D.; Silva, C.; Setayesh, S.; Grimsdale, A.
C.; M u¨ llen, K.; Br e´ das, J.; Beljonne, D. J. Am. Chem. Soc. 2005, 127,
4744.
4
34, 876. (i) Kim, I. B.; Dunkhorst, A.; Gilbert, J.; Bunz, U. H. F.
Macromolecules, 2005, 38, 4560. (j) Kim, I. B.; Wilson, J. N.; Bunz, U.
H. F. Chem. Commun. 2005, 10, 1273.
(
2) (a) Chen, L.; McBranch, D. W.; Wang, H.; Helgeson, R.; Wudl, F.; Whitten,
D. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12287. (b) DiCesare, N.; Pinto,
M. R.; Schanze, K. S.; Lakowicz, J. R. Langmuir 2002, 18, 7785. (c) Liu,
B.; Bazan, G. C. Chem. Mater. 2004, 16, 4467. (d) Leclerc, M.; Ho, H. A.
Synlett 2004, 2, 380. (e) Disney, M. D.; Zheng, J.; Swager, T. M.; Seeberger,
P. H. J. Am. Chem. Soc. 2004, 126, 13343. (f) Kumaraswamy, S.; Bergstedt,
T.; Shi, X.; Rininsland, F.; Kushon, S.; Xia, W. S.; Ley, K.; Achyuthan,
K.; McBranch, D.; Whitten, D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
(4) Lee, D. W.; Swager, T. M. Synlett 2004, 149.
(5) (a) Korri, Y. H.; Garnier, F.; Srivastava, P.; Godillot, P.; Yassar, A. J. Am.
Chem. Soc. 1997, 119, 7388. (b) B a¨ uerle, P.; Emge, A. AdV. Mater. 1998,
10, 324. (c) Garnier, F.; Korri, Y. H.; Srivastava, P.; Mandrand, B.; Delair,
T. Synth. Met. 1999, 100, 89. (d) Korri-Y, H.; Yassar, A. Biomacromol-
ecules 2001, 2, 58.
7
511. (g) Pinto, M. R.; Schanze, K. S. Proc. Natl. Acad. Sci. U.S.A. 2004,
(6) Swager, T. M. Acc. Chem. Res. 1998, 31, 201.
(7) (a) Pinto, M. R.; Schanze, K. S. Synthesis 2002, 9, 1293. (b) Traser, S.;
Wittmeyer, P.; Rehahn, M. e-Polymers 2002, No. 032.
(8) (a) McQuade, D. T.; Hegedus, A. H.; Swager, T. M. J. Am. Chem. Soc.
2000, 122, 12389. (b) Gaylord, B. S.; Heeger, A. J.; Bazan, G. C. Proc.
Natl. Acad. Sci. U.S.A. 2002, 99, 10954. (c) Kim, T. H.; Swager, T. M.
Angew. Chem. 2003, 42, 4803. (d) Gaylord, B. S.; Heeger, A. J.; Bazan,
G. C. J. Am. Chem. Soc. 2003, 125, 896.
(9) Dwight, S. J.; Gaylord, B. S.; Hong, J. W.; Bazan, G. C. J. Am. Chem.
Soc. 2004, 126, 16850.
1
01, 7505. (h) Le Floch, F.; Ho, H. A.; Harding, L. P.; Bedard, M.; Neagu,
P. R.; Leclerc, M. AdV. Mater. 2005, 17, 1251. (i) Ho, H. A.; Bers-Aberem,
M.; Leclerc, M. Eur. J. Chem. 2005, 11, 1718. (j) Wosnick, J. H.; Mello,
C. M.; Swager, T. M. J. Am. Chem. Soc. 2005, 127, 3400. (k) Nilsson, K.
P. R.; Ingan a¨ s, O. Nat. Mater. 2003, 2, 419. (l) Nilsson, K. P. R.; Olsson,
J. D. M.; Stabo-Eeg, F.; Lindgren, M.; Konradsson, P.; Ingan a¨ s, O.
Macromolecules 2005, 38, 6813. (m) Herland, A.; Nilsson, K. P. R.; Olsson,
J. D. M.; Hammarstrom, P.; Konradsson, P.; Ingan a¨ s, O. J. Am. Chem.
Soc. 2005, 127, 2317.
1188
9
J. AM. CHEM. SOC. 2006, 128, 1188-1196
10.1021/ja055382t CCC: $33.50 © 2006 American Chemical Society