Page 5 of 18
ACS Medicinal Chemistry Letters
(16) Richardson, M. B.; Torigoe, S.; Yamasaki, S.; Williams, S. J.
financial support (scholarship). This research was supported by a
Mycobacterium Tuberculosis -gentiobiosyl Diacylglycerides
Signal Through the Pattern Recognition Receptor Mincle: Total
Synthesis and Structure Activity Relationships. Chem. Commun.,
2015, 51, 15027-15030.
1
2
3
4
5
6
7
8
Grant-in-Aid for Research on Innovative Areas (No. 26100).
REFERENCES
(17) van Dissel, J. T.; Joosten, S. A.; Hoff, S. T.; Soonawala, D.;
Prins, C.; Hokey, D. A.; O’Dee, D. M.; Graves, A.; Thierry-
Carstensen, B.; Andreasen, L. V. A Novel Liposomal Adjuvant
System, CAF01, Promotes Long-lived Mycobacterium
Tuberculosis-specific T-cell Responses in Human. Vaccine,
2014, 32, 7098-7107.
(18) Ishikawa, T.; Itoh, F.; Yoshida, S.; Saijo, S.; Matsuzawa, T.;
Gonoi, T.; Saito, T.; Okawa, Y.; Shibata, N.; Miyamoto, T.;
Yamasaki, S. Identification of Distinct Ligands for the C-type
Lectin Receptors Mincle and Dectin-2 in the Pathogenic Fungus
Malassezia. Cell Host & Microbe, 2013, 13, 477-488.
(19) Crich, D.; Sun, S. Direct Synthesis of -M nnopyr nosides by
the Sulfoxide Method. J. Org. Chem., 1997, 62, 1198-1199.
(20) Stick, R. V.; Williams, S. J. Carbohydrates: The Essential
Molecules of Life, Second Edition, Elsevier, Great Britain, 2010.
(21) Frihed, T. G.; Bols, M.; Pedersen, C. M. Mechanisms of
Glycosylation Reactions Studied by Low-Temperature Nuclear
Magnetic Resonance. Chem. Rev., 2015, 115, 4963-5013.
(22) Crich, D.; Chandrasekera, N. S. Mechanism of 4,6-O-
Benzylidene-Directed -M nnosyl tion as Determined by -
Deuterium Kinetic Isotope Effects. Angew. Chem. Int. Ed., 2004,
43, 5386-5389.
(23) Crich, D.; Hu, T.; Cai, F. Does Neighboring Group Participation
by Non-Vicinal Esters Play a Role in Glycosylation Reactions?
Effective Probes for the Detection of Bridging Intermediates. J.
Org. Chem., 2008, 73, 8942-8953.
(24) Crich, D. Mechanism of a Chemical Glycosylation Reaction.
Acc. Chem. Res., 2010, 43, 1144-1153.
(25) Crich, D.; Banerjee, A.; Yao, Q. Direct Chemical Synthesis of
the -D-M nn ns: The -(1-2) and -(1-4) Series. J. Am.
Chem. Soc., 2004, 126, 14930-14934.
(26) Dromer, F.; Chevalier, R.; Sendid, B.; Improvisi, L.; Jouault, T.;
Robert, R.; Mallet, J. M.; Poulain, D. Synthetic Analogues of -
1,2 Oligomannosides Prevent Intestinal Colonization by the
Pathogenic Yeast Candida albicans. Antimicrob. Agents
Chemother., 2002, 46, 3869-3876.
(1) Schoenen, H.; Bodendorfer, B.; Hitchens, K.; Manzanero, S.;
Werninghaus, K.; Nimmerjahn, F.; Agger, E. M.; Stenger, S.;
Andersen, P.; Ruland, J.; Brown, G. D.; Wells, C.; Lang, R.
Mincle Is Essential for Recognition and Adjuvanticity of the
Mycobacterial Cord Factor and its Synthetic Analog Trehalose-
Dibehenate. J. Immunol, 2010, 184, 2756-2760.
(2) Ishikawa, E.; Ishikawa, T.; Morita, Y. S.; Toyonaga, K.;
Yamada, H.; Takeuchi, O.; Kinoshita, T.; Akira, S.; Yoshikai,
Y.; Yamasaki, S. Direct Recognition of the Mycobacterial
Glycolipid, Trehalose Dimycolate, by C-type Lectin Mincle. J.
Exp. Med., 2009, 206, 2879-2888.
(3) Huber, A.; Kallerup, R. S.; Korsholm, K. S.; Franzyk, H.;
Lepenies, B.; Christensen, D.; Foged, C.; Lang, R. Trehalose
Diester Glycolipids Are Superior to the Monoesters in Binding
to Mincle, Activation of Macrophages in Vitro and Adjuvant
Activity in Vivo. Innate immunity, 2016, 22, 405-418.
(4) Decout, A.; Silva-Gomes, S.; Drocourt, D.; Barbe, S.; André, I.;
Cueto, F. J.; Lioux, T.; Sancho, D.; Pérouzel, E.; Vercellone, A.;
Prandi, J.; Gilleron, M.; Tiraby, G.; Nigou, J. Rational Design of
Adjuvants Targeting the C-type Lectin Mincle. Proc. Natl. Acad.
Sci. U. S. A., 2017, 114, 2675-2680.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) Williams, S. J. Sensing Lipids with Mincle: Structure and
Function, Frontiers in Immunology, 2017, 8, 1662.
(6) Braganza, C. D.; Teunissen, T.; Timmer, M. S. M.; Stocker, B.
L. Identification and Biological Activity of Synthetic
Macrophage Inducible C-Type Lectin Ligands, Frontiers in
Immunology, 2018, 8, 1940.
(7) Foster, A. J.; Nagata, M.; Lu, X.; Lynch, A. T.; Omahdi, Z.;
Ishikawa, E.; Yamasaki, S.; Timmer, M. S. M.; Stocker, B. L.
Lipidated Bratemicin Analogues Are Potent TH1-Stimulating
Vaccine Adjuvants, J. Med. Chem., 2018, 61, 1045-1060.
(8) Nagata, M.; Omahdi, Z.; Yamasaki, S. Pathogen-Sensing by
Mincle: Function and Molecular Aspects. In C-Type Lectin
Receptors in Immunity; Yamasaki, S. Ed; Springer: Japan, 2016;
pp 15-34.
(9) Imai, T.; Matsumura, T.; Mayer-Lambertz, S.; Wells, C.A.;
Ishikawa, E.; Butcher, S. K.; Barnett, T. C.; Walker, M. J.;
Imamura, A.; Ishida, H.; Ikebe, T.; Miyamoto,T.; Ato, M.;
Ohga,S.; Lepenies, B.; van Sorge, N. M.; Yamasaki, S.
Lipoteichoic Acid Anchor Triggers Mincle to Drive Protective
Immunity against Invasive Group A Streptococcus Infection,
Proc. Natl. Acad. Sci. USA., 2018, 115, E10662-E10671.
(10) Kiyotake, R.; Oh-hora, M.; Ishikawa, E; Miyamoto, T; Ishibashi,
T.; Yamasaki, S. Human Mincle Binds to Cholesterol Crystals
and Triggers Innate Immune Responses, J. Biol. Chem., 2015,
290, 25322-25332.
(11) Yamasaki, S.; Ishikawa, E.; Sakuma, M.; Hara, H.; Ogata, K.;
Saito, T. Mincle IS an ITAM-coupled Activating Receptor that
Senses Damaged Cells, Nat. Immunol., 2008, 9, 1179-1188.
(12) Stocker, B. L.; Khan, A. A.; Chee, S. H.; Kamena, F.; Timmer,
M. S. M. On One Leg: Trehalose Monoesters Activate Macro in
a Mincle-Dependent Manner, ChemBioChem. 2014, 10, 382-
388.
(13) Geijtenbeek, T. B.; Gringhuis, S. I. C‑type Lectin Receptors in
the Control of T Helper Cell Differentiation. Nat. Rev. Immunol.,
2016, 16, 433-448.
(27) Bock, K.: Pederson, C.J. A Study of 13CH Coupling Constants in
Hexopyranoses. J. Chem. Soc., Perkin Trans 2, 1974, 293-299.
(28) Ishikawa, E.; Ishikawa, T.; Morita, Y. S.; Toyonaga, K.;
Yamada, H; Takeuchi, O.; Kinoshita, T.; Akira, S.; Yoshikai Y.;
Yamasaki, S. Direct Recognition of the Mycobacterial
Glycolipid, Trehalose Dimycolate, by C-type Lectin Mincle. J.
Exp. Med., 2009, 206, 2879-2888.
(29) Behler-Janbeck, F.; Takano, T.; Maus, R.; Stolper, J; Jonigk, D.;
Tarrés, M-T; Fuehner, T.; Prasse, A.; Welte, T.; Timmer, M. S.
M.; Stocker B. L.; Nakanishi, Y.; Miyamoto, T.; Yamasaki, S.;
Maus, Ultrich A. C-type Lectin Mincle Recognizes
Glucosyldiacylglycerol of Streptococcus Pneumoniae and Plays
a Protective Role in Pneumococcal Pneumonia. PLoS Pathogens,
2016, 12, PPAT1006038.
(30) Matsumoto, M.; Tanaka, T.; Kaisho, T.; Sanjo, H.; Copeland, N.
G.; Gilbert, D. J; Jenkins, N. A.; Akira, S. A Novel LPS-
Inducible C-Type Lectin Is a Transcriptional Target of NF-IL6
in Macrophages. J. Immunol, 1999, 163, 5039-5048.
(31) Rambaruth, N. D.; Jégouzo, S. A.; Marlor, H.; Taylor, M. E.;
Drickamer, K. Mouse Mincle: Characterization as a Model for
Human Mincle and Evolutionary Implications. Molecules, 2015,
20, 6670-6682.
(14) van der Peet, P. L.; Gunawan, C.; Torigoe, S.; Yamasaki, S.;
Williams, S. J. Corynomycolic Acid-containing Glycolipids
Signal Through the Pattern Recognition Receptor Mincle. Chem.
Commun., 2015, 51, 5100-5103.
(15) Smith, D. G.; Williams, S. J. Immune Sensing of Microbial
Glycolipids and Related Conjugates by T Cells and the Pattern
Recognition Receptors MCL and Mincle. Carbohydr. Res., 2016,
420, 32-45.
(32) Jégouzo, S. A.; Harding, E. C.; Acton, O.; Rex, M. J.; Fadden,
A. J.; Taylor, M. E.; Drickamer, K. Defining the Conformation
of Human Mincle that Interacts with Mycobacterial Trehalose
Dimycolate. Glycobiology, 2014, 24, 1291-1300.
(33) Feinberg, H.; Jégouzo, S. A.; Rowntree, T. J.; Guan, Y.; Brash,
M. A.; Taylor, M. E.; Weis, W. I.; Drickamer, K. Mechanism for
Recognition of an Unusual Mycobacterial Glycolipid by the
Macrophage Receptor Mincle. J. Biol. Chem., 2013, 288, 28457-
ACS Paragon Plus Environment