Anionic Snieckus-Fries Rearrangement
A R T I C L E S
Table 2. Summary of Rate Studies for the Anionic Snieckus-Fries Rearrangement
ArLi
solvent
R
X
temperature °C
LDA Order
solvent order
a
b
7
7
6
6
7
6
a
d
b
d
e
THF
Me
Et
Et
Me
Me
Et
F
-40
15
-65
-78
-60
-25
0, -0.48 ( 0.04
1.08 ( 0.05, 2.4 ( 0.6
c
d
n-BuOMe
HMPA
HMPA
DME
OMe
OMe
F
F
OMe
0, 0.49 ( 0.09
0, -1.10 ( 0.05
e
e
0
0
0
0
0.8 ( 0.1
1.2 ( 0.3
0
0
g
TMCDA
a
b
c
d
e
0
.42 M LDA. 0.098 M LDA. 7.0 M n-BuOMe. 1.3 M n-BuOMe. The order in THF cosolvent is zero.
6
(
3) Mixed trimers (8) display three Li resonances in a 1:1:1
6
15
ratio, manifesting the Li- N coupling consistent with a
Lia-Nb-Lic-Nd-Lie subunit. Each mixed trimer also displays
a triplet of triplets and a quintet in the N NMR spectrum.
The asymmetry confirms the chelation of the carbamate moiety
1
5
as drawn.
6
(
4) Phenolate mixed dimers (9) display characteristic Li
1
5
doublets and N quintets that are consistent with Lia-Nb-Lic
connectivity. The Li resonances of the phenolate mixed dimers
6
are upfield from the aryllithium mixed dimers (7).
6
(
5) Phenolate mixed trimers (10) show three Li resonances
1
5
as two doublets and one triplet in a 1:1:1 ratio. Two
resonances appear as either triplet of triplets or quintets.
The anionic Snieckus-
Fries rearrangement was monitored using an in situ IR spec-
N
Figure 1. Plot of kobsd vs [n-BuOMe] in pentane cosolvent for the
rearrangement of 7d (0.004 M) by LDA (0.075 M) at 15 °C. The curve
7
,27
n
11,28,29
depicts an unweighted least-squares fit to kobsd ) k[n-BuOMe] + k′ (k )
Rate Studies. General Methods.
-
3
-4
(
3.0 ( 0.1) × 10 , n ) -1.10 ( 0.05, k′ ) (4.1 ( 0.1) × 10 ).
3
0
trometer fitted with a 30-bounce, silicon-tipped probe. The
(
24) (a) Crittendon, R. C.; Beck, B. C.; Su, J.; Li, X. W.; Robinson, G. H.
Organometallics 1999, 18, 156. (b) Olmstead, M. M.; Power, P. P. J.
Organomet. Chem. 1999, 408, 1. (c) Girolami, G. S.; Riehl, M. E.;
Suslick, K. S.; Wilson, S. R. Organometallics 1992, 11, 3907. (d)
Bosold, F.; Zulauf, P.; Marsch, M.; Harms, K.; Lohrenz, J.; Boche,
G. Angew. Chem., Int. Ed. 1991, 30, 1455. (e) Hardman, N. J.;
Twamley, B.; Stender, M.; Baldwin, R.; Hino, S.; Schiemenz, B.;
Kauzlarich, S. M.; Power, P. P. J. Organomet. Chem. 2002, 643, 461.
(
f) Wegner, G. L.; Berger, R. J. F.; Schier, A.; Schmidbaur, H. Z.
Naturforsch., B: Chem. Sci. 2000, 55, 995. (g) Schiemenz, B.; Power,
P. P. Angew. Chem., Int. Ed. 1996, 35, 2150. (h) Maetzke, T.; Seebach,
D. HelV. Chim. Acta 1989, 72, 624. (i) Kottke, T.; Sung, K.; Lagow,
R. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 1517.
Figure 2. Plot of kobsd vs [LDA] in 1.3 M n-BuOMe/pentane for the
rearrangement of 7d (0.004 M) at 15 °C. The curve depicts an unweighted
(
25) For representative computational studies of aryllithiums, see: (a)
Krasovsky, A.; Straub, B. F.; Knochel, P. Angew. Chem., Int. Ed. 2006,
45, 159. (b) Bachrach, S. M.; Chamberlin, A. C. J. Org. Chem. 2004,
n
-3
least-squares fit to kobsd ) k[LDA] + k′ (k ) (6.3 ( 0.2) × 10 , n )
-4
0
.49 ( 0.09, k′ ) (7.9 ( 0.2) × 10 ). k′ (see b) was set to equal k′ in
6
2
9, 2111. (c) Kwon, O.; Sevin, F.; McKee, M. L. J. Phys. Chem. A
001, 105, 913. (d) Wiberg, K. B.; Sklenak, S.; Bailey, W. F. J. Org.
Figure 3.
2
3-25
2
Chem. 2000, 65, 2014. (e) Kremer, T.; Junge, M.; Schleyer, P. v. R.
Organometallics 1996, 15, 3345. (f) Also, see ref 23b.
of monomers.
Especially large JFC couplings (>100 Hz)
1
3
in the C NMR spectra are similar to those observed in other
orthofluorinated aryllithiums.
2) Mixed dimers (7) available by using excess [ Li, N]LDA
show characteristic Li doublets and N quintets consistent with
the Lia-Nb-Lic connectivity. The asymmetry imparted by
chelation of the carbamate moiety could be observed as two
Li resonances at very low temperature (<-125 °C). C NMR
spectra show quintets due to coupling of the lithiated carbon to
two Li nuclei and, in the case of the meta fluoro species, are
(
26) (a) Menzel, K.; Fisher, E. L.; DiMichele, L.; Frantz, D. E.; Nelson,
7
,23a,b,26
2
T. D.; Kress, M. H. J. Org. Chem. 2006, 71, 2188. (b) JC-F values
6
15
have been correlated with π-bond orders and total electronic charge
(
1
3
6
15
at the C atom: Doddrell, D.; Barfield, M.; Adcock, W.; Aurangzeb,
M.; Jordan, D. J. Chem. Soc., Perkin Trans. 1976, 2, 402.
(27) (a) The homoaggregated phenolates tend to be insoluble, and their
often complex structures in solution are unknown. Structurally
analogous lithium phenolates bearing carbonyl-containing moieties in
the ortho position have been characterized crystallographically: Wang,
Z.; Chai, Z.; Li, Y. J. Organomet. Chem. 2005, 690, 4252. (b) Boyle,
T. J.; Pedrotty, D. M.; Alam, T. M.; Vick, S. C.; Rodriguez, M. A.
Inorg. Chem. 2000, 39, 5133. (c) Clegg, W.; Lamb, E.; Liddle, S. T.;
Snaith, R.; Wheatley, A. E. H. J. Organomet. Chem. 1999, 573, 305.
6
13
6
further split by JFC coupling.
(d) Cetinkaya, B.; Gumrukcu, I.; Lappert, M. F.; Atwood, J. L.; Shakir,
(
(
(
21) Singh, K. J.; Hoepker, A. C.; Collum, D. B. Cornell University, Ithaca,
R. J. Am. Chem. Soc. 1980, 102, 2086. (e) Khanjin, N. A.; Menger,
F. M. J. Org. Chem. 1997, 62, 8923.
NY. Unpublished work.
22) For a discussion and leading references to the use of mixed aggregation
to provide insight into homoaggregation, see ref 47b.
23) (a) Ramirez, A.; Candler, J.; Bashore, C. G.; Wirtz, M. C.; Coe, J. W.;
Collum, D. B. J. Am. Chem. Soc. 2004, 126, 14700. (b) Riggs, J. C.;
Ramirez, A.; Cremeens, M. E.; Bashore, C. G.; Candler, J.; Wirtz,
M. C.; Coe, J. W.; Collum, D. B. J. Am. Chem. Soc. 2008, 130, 3406.
(28) (a) Hsieh, H. L.; Quirk, R. P. Anionic Polymerization: Principles and
Practical Applications; Marcel Dekker: New York, 1996. (b) Wardell,
J. L. In ComprehensiVe Organometallic Chemistry; Wilkinson, G.;
Stone, F. G. A., Abel, E. W., Eds.; Pergamon: New York, 1982; Vol.
1, Chapter 2. (c) Szwarc, M., Ed. Ions and Ion Pairs in Organic
Reactions; Wiley: New York, 1972; Vol. I, II.
(
c) Stratakis, M.; Wang, P. G.; Streitwieser, A. J. Org. Chem. 1996,
1, 3145. (d) Reich, H. J.; Green, D. P.; Medina, M. A.; Goldenberg,
(29) Espenson, J. H. Chemical Kinetics and Reaction Mechanisms, 2nd
ed.; McGraw-Hill: New York, 1995.
6
¨
W. S.; Gudmundsson, B.O.; Dykstra, R. R.; Phillips, N. H. J. Am.
Chem. Soc. 1998, 120, 7201.
(30) Rein, A. J.; Donahue, S. M.; Pavlosky, M. A. Curr. Opin. Drug DiscoV.
DeV. 2000, 3, 734.
J. AM. CHEM. SOC. 9 VOL. 130, NO. 41, 2008 13711