Karlov et al.
both substituents X and X′ form one tridentate ligand
containing an additional donor group are of particular interest
due to the possible formation of an additional transannular
interaction, leading to hexacoordination at the central atom
M. The structural study of these compounds may allow new
information to be obtained for the transannular MrN bond.
established by X-ray diffraction confirming the hexacoor-
dination of the Ge atom in these compounds (2 and 3). These
data have been compared with those obtained from DFT
calculations.
Experimental Section
We expect the spirobis(ocanes), [RN(CH
Si, Ge, Sn) (C), to be the most interesting in this regard.
However, only few papers have dealt with their synthesis,
2 2 2 2
CH O) ] M (M )
General Procedures. All manipulations were performed under
a dry, oxygen-free argon atmosphere using standard Schlenk
techniques. Solvents were dried by standard methods and distilled
13-18
and the structures of only two compounds have been
determined by single-crystal X-ray diffraction.14,15,18 On the
other hand, it is well-known that hypercoordinated group 14
elements derivatives display a wide range of biological
2 2 2 2
prior to use. PhN(CH CH OH) (6) (Aldrich) and MeN(H)CH -
CH OH (Aldrich) were used as supplied. Ge(OEt) , Ge(OMe) ,29
2
4
4
30
31
MeN(CH
2
CH
2
OH)
2
(4), and MeN(CH
CH OSiMe )
2 2 3 2
were pre-
pared according to the literature. CDCl
GmbH and dried over P
1H and 13C NMR spectra were
recorded on a Varian VXR400 spectrometer (in CDCl at 295 K).
Chemical shifts in the H and 13C NMR spectra are given in ppm
relative to internal Me Si. Mass spectra (EI-MS) were recorded on
3
was obtained from Deutero
4 10
O .
activity, which makes them interesting for medicinal chem-
istry and pharmacology.3
,18,19
Thus, spirobis(ocanes) (III)
3
1
may also be potentially useful as therapeutic agents. As a
part of our program to investigate the structure and chemical
behavior of hypercoordinated germanium molecules, espe-
cially germatranes and germocanes, and to compare the
degree of strength of the transannular MrN interactions with
4
a Varian CH-7a device using electron impact ionization at 70 eV;
all assignments were made with reference to the most abundant
isotopes. Elemental analyses were carried out by the Microanalytical
Laboratory of the Chemistry Department of the Moscow State
University. In this work, the nonempirical generalized gradient
approximation (GGA) for the exchange-correlation functional of
Perdew et al. was employed.3 Calculations were performed using
the program “PRIRODA” developed by Laikov, which implements
an economical computational procedure.34 Large orbital basis sets
of contracted Gaussian-type functions of the size (5s1p):[3s1p] for
H, (11s6p2d):[4s3p2d] for C, (11s6p2d):[4s3p2d] for N, (11s6p2d):
6
,20-28
those in the derivatives of other main group elements,
we present the synthesis of three novel 1,7,9,15-tetraoxa-
,12-diaza-8-germaspiro[7.7]pentadecanes, i.e., [RN(CH
CHR′O) Ge (1-3), which are the derivatives of N-methyl-
2,33
4
2
-
2 2
]
diethanolamine (4), N-methyl-N-(2-hydroxy-2-phenylethyl)-
ethanolamine (5), and N-phenyldiethanolamine (6), respec-
tively. The motivation in our work was to study structural
changes in hypercoordinated germanium compounds arising
from the replacement of substituents at the different positions
of the ligand cage.
Compounds 1-3 were prepared via reaction of 2 equiv
of the corresponding dialkanolamine with tetraalkoxyger-
mane. The crystal structures of two of them have been
[4s3p2d] for O, and (19s16p9d):[6s5p3d] for Ge were used. The
present method has been used and has given very useful results in
21,35
the organometallic chemistry of Si, Ge, Sn, Sb, and Bi.
The
chemical bonds were analyzed by using the topological analysis
of the wave function. All critical point calculations were performed
using AIMPAC95 software package.3
6,37
N-Methyl-N-(2-hydroxy-2-phenylethyl)ethanolamine, MeN-
2 2 2
(CH CH OH)CH CH(Ph)OH (5). A mixture of N-methylethano-
(
(
(
(
(
13) Chen, D.-H.; Chiang, H.-C. Polyhedron 1995, 14, 687-691.
14) Follner, H. Monatsh. Chem. 1972, 103, 1438-1443.
15) Fiedler, R.; Follner, H. Monatsh. Chem. 1978, 108, 319-323.
16) Mehrotra, R. C.; Gupta, V. D. Indian J. Chem. 1967, 5, 643-645.
17) Kostyanovskii, R. G.; Prokof’ev, A. K.; Goldanskii, V. I.; Hrapov,
V. V.; Rochev, V. Ya. Zh. Obsh. Khim. 1968, 38, 270-273; Chem.
Abstr. 1968, 69, 92517z.
lamine (8.26 g, 0.11 mol) and styrene oxide (12.02 g, 0.10 mol)
was stirred for 24 h at room temperature. The distillation of the
reaction mixture gave a colorless oil (17.80 g, 91%; 132-136 °C,
0.02 Torr) as a mixture of 5 (95%) and MeN(CH
CHPhCH OH (5%). This mixture was used without further
purification. Analytical data for 5 are as follows. NMR spectra:
2 2
CH OH)-
2
(
(
(
18) Organic Silicon DeriVatiVes of Alkanolamines; Lukevics, E. Ya., Ed.;
1
H, δ 2.36 (s, 3H, NCH
3
), 2.52-2.66 (m, 4H, NCH
), 4.75 (dd, 1H, OCH), 7.30-
); C{ H}, δ 42.30 (NCH ), 59.25 (NCH ),
, OCH ), 70.27 (OCH), 125.86, 127.52, 128.32,
). Analytical data for MeN(CH CH OH)CHPhCH
OH are as follows. NMR spectra: H, δ 2.20 (s, 3H, NCH ), other
2
), 3.25 (br s,
Zinatne: Riga, Latvia, 1987.
19) Lukevics, E.; Germane, S.; Ignatovich, L. Appl. Organomet. Chem.
2H, OH), 3.58-3.68 (m, 2H, OCH
7
5
2
1992, 6, 543-564.
13
1
.37 (m, 5H, C
6
H
5
3
2
20) Shutov, P. L.; Karlov, S. S.; Harms, K.; Churakov, A. V.; Howard, J.
9.54, 65.94 (NCH
2
2
A. K.; Lorberth, J.; Zaitseva, G. S. Eur. J. Inorg. Chem. 2002, 2784-
2788.
142.15 (C
H
6 5
2
2
2
-
(
21) Shutov, P. L.; Karlov, S. S.; Harms, K.; Tyurin, D. A.; Churakov, A.
V.; Lorberth, J.; Zaitseva, G. S. Inorg. Chem. 2002, 41, 6147-6152.
22) Shutov, P. L.; Sorokin, D. A.; Karlov, S. S.; Harms, K.; Oprunenko,
Yu. F.; Churakov, A. V.; Antipin, M. Yu.; Zaitseva, G. S.; Lorberth,
J. Organometallics 2003, 22, 516-522.
1
3
13
1
signals overlapped with signals of protons of 5; C{ H}, δ 37.48
(
(29) Jonson, O. H.; Fritz, H. E. J. Am. Chem. Soc. 1953, 75, 718-720.
(30) Hanby, W. E.; Rydon. J. Chem. Soc. 1947, 513-519.
(31) Lukevics, E. Ya.; Libert, L. I.; Voronkov, M. G. Zh. Obshch Khim.
1969, 39, 806-809; Chem. Abstr. 1969, 71, 50058m.
(32) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996, 77,
3865-3868.
(33) Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029-5036.
(34) Laikov, D. N. Chem. Phys. Lett. 1997, 281, 151-156.
(35) Shutov, P. L.; Karlov, S. S.; Harms, K.; Tyurin, D. A.; Sundermeyer,
J.; Lorberth, J.; Zaitseva, G. S. Eur. J. Inorg. Chem. 2004, 2498-
2503.
(36) Biegler-K o¨ nig, F. W.; Bader, R. F. W.; Tang, T.-H. J. Comput. Chem.
1982, 13, 317-328.
(37) Keith, T. A.; Laidig, K. E.; Krug, P.; Cheeseman, J. R.; Bone, R. G.
A.; Biegler-K o¨ nig, F. W.; Duke, J. A.; Tang, T.; Bader, R. F. W. The
aimpac95 programs; 1995.
(
23) Gauchenova, E. V.; Karlov, S. S.; Selina, A. A.; Chernyshova, E. S.;
Churakov, A. V.; Howard, J. A. K.; Troitsky, N. A.; Tandura, S. N.;
Lorberth, J.; Zaitseva, G. S. J. Organomet. Chem. 2003, 676, 8-21.
24) Shutov, P. L.; Karlov, S. S.; Harms, K.; Poleshchuk, O. Kh.; Lorberth,
J.; Zaitseva, G. S. Eur. J. Inorg. Chem. 2003, 1507-1510.
25) Shutov, P. L.; Karlov, S. S.; Harms, K.; Churakov, A. V.; Lorberth,
J.; Zaitseva, G. S. Eur. J. Inorg. Chem. 2004, 2123-2129.
26) Shishkov, I. F.; Khristenko, L. V.; Rudakov, F. M.; Golubinskii, A.
B.; Vilkov, L. V.; Karlov, S. S.; Zaitseva, G. S.; Samdal, S. Struct.
Chem. 2004, 15, 11-16.
(
(
(
(27) Zaitseva, G. S.; Livantsova, L. I.; Nasim, M.; Karlov, S. S.; Churakov,
A. V.; Howard, J. A. K.; Avtomonov, E. V.; Lorberth, J. Chem. Ber.
1997, 130, 739-746.
(28) Karlov, S. S.; Shutov, P. L.; Akhmedov, N. G.; Seip, M. A.; Lorberth,
J.; Zaitseva, G. S. J. Organomet. Chem. 2000, 598, 387-394.
4880 Inorganic Chemistry, Vol. 44, No. 13, 2005