Angewandte
Chemie
ecules 2003, 4, 1321 – 1326; d) D. Volkmer, M. Fricke, T. Huber,
doublets of charged residues and the self-assembling charac-
teristics of the group I and II peptides generated a functional-
group-segregated surface which facilitates the nucleation,
growth, and aggregation of calcium carbonate crystal nuclei
to form polycrystalline calcite crystal aggregates. The group
III peptides showed an unordered structure in solution and no
activity toward mineralization. This finding is supported by
evidence from DLS, NMR, CD, and fluorescence spectros-
copy investigations.
N. Sewald, Chem. Commun. 2004, 1872– 1873.
[7] a) R. Lakshminarayanan, S. Valiyaveettil, R. M. Kini, Proc. Natl.
Acad. Sci. USA 2002, 99, 5155 – 5159; b) R. Lakshminarayanan,
S. Valiyaveettil, V. S. Rao, R. M. Kini, J. Biol. Chem. 2003, 278,
2938 – 2946; c) R. Lakshminarayanan, J. S. Joseph, S. Valiya-
veettil, R. M. Kini, Biomacromolecules, 2005, 6, 741 – 751.
[8] a) K. Mann, F. Siedler, Biochim. Biophys. Acta Proteins Pro-
teom. 2004, 1696, 41 – 50; b) J. P. Reyes-Grajeda, A. Moreno, A.
Romero, J. Biol. Chem. 2004, 279, 40876 – 40881; c) K. Mann,
Br. Poult. Sci. 2004, 45, 483 – 490.
[9] a) M. Bergdoll, M. H. Remy, C. Cagnon, J. M. Masson, P.
Dumas, Structure 1997, 5, 391 – 398; b) M. W. MacArthur, J. M.
Thornton, J. Mol. Biol. 1991, 218, 397 – 412; c) S. C. Benson,
F. H. Wilt in Calcification in Biological Systems (Ed.: E.
Bonucci), CRC, Boca Raton, FL, 1992, pp. 157 – 178; d) J. P.
Gorski, Calcif. Tissue Int. 1992, 50, 391 – 396; e) J. Moradian-
Oldak, J. Tan, A. G. Fincham, Biopolymers 1998, 46, 225 – 238;
f) J. Moradian-Oldak, W. Leung, A. G. Fincham, J. Struct. Biol.
1998, 122, 320 – 327; g) C. E. Killian, F. C. Wilt, J. Biol. Chem.
1996, 271, 9150 – 9159.
[10] S. Albeck, J. Aizenberg, L. Addadi, S. Weiner, J. Am. Chem. Soc.
1993, 115, 11691 – 11697.
[11] C. Cerini, V. Peyrot, C. Garnier, L. Duplan, S. Veesler, J. P.
Le Caer, J. P. Bernard, H. Bouteille, R. Michel, A. Vazi, P.
Dupuy, B. Michel, Y. Berland, J. M. Verdier, J. Biol. Chem. 1999,
274, 22266 – 22274.
[12] a) A. P. Demchenko, Topics in Fluorescence Spectroscopy, Vol. 3
(Ed.: J. R. Lackowicz), Plenum, New York, 1992, pp. 77; b) L. W.
Ruddock, T. R. Hirst, R. B. Freedman, Biochem. J. 1996, 315,
1001 – 1005.
[13] a) F. J. Blanco, G. Rivas, L. Serrano, Nat. Struct. Biol. 1994, 1,
584 – 590; b) M. C. Mannin, M. Illangasekare, R. W. Woody,
Biophys. Chem. 1998, 31, 77 – 86.
[14] a) G. D. Fasman, Circular Dichroism and the Conformational
Analysis of Biomolecules, Plenum, New York, 1996; b) S. C.
Shankaramma, S. K. Singh, A. Sathyamurthy, P. Balaram, J. Am.
Chem. Soc. 1999, 121, 5360 – 5363.
[15] D. S. Wishart, B. D. Sykes, F. M. Richards, J. Mol. Biol. 1991, 222,
311 – 333.
Received: January 24, 2005
Revised: May 5, 2005
Published online: August 1, 2005
Keywords: biomineralization · eggshell · peptides · proteins ·
.
structure–activityrelationships
[1] a) Materials Synthesis Based on Biological Processes (Eds.: M.
Alper, P. D. Calvert, R. Frankel, P. C. Rieke, D. A. Tirrell),
Materials Research Society, Pittsburgh, PA, 1991; b) Biomimetic
Materials Chemistry (Ed.: S. Mann), VCH, New York, 1996; c) S.
Zhang, Nat. Biotechnol. 2003, 21, 1171 – 1178.
[2] a) H. A. Lowenstam, S. Weiner, On Biomineralization, Oxford
University Press, New York, 1989; b) S. Mann, Biomineraliza-
tion: Principles and Concepts in Bioinorganic Materials Chemis-
try, Oxford University Press, New York, 2001.
[3] a) C. M. Zaremba, A. M. Belcher, M. Fritz, Y. L. Li, S. Mann,
P. K. Hansma, D. E. Morse, J. S. Speck, G. D. Stucky, Chem.
Mater. 1996, 8, 679 – 690; b) H. C. Lichtenegger, T. Schoberl,
M. H. Bartl, H. Waite, G. D. Stucky, Science 2002, 298, 389 – 392;
c) L. Addadi, S. Weiner, Angew. Chem. 1992, 104, 159 – 176;
Angew. Chem. Int. Ed. Engl. 1992, 31, 153 – 169.
[4] a) A. P. Wheeler, C. S. Sikes in Chemical Aspects of Regulation
of Mineralization (Eds.: C. S. Sikes, A. P. Wheeler), University of
South Alabama, Mobile, AL, 1988, pp. 9 – 13; b) A. P. Wheeler,
C. S. Sikes in Material Synthesis Utilizing Biological Process
(Eds.: P. C. Rieke, P. D. Calvert, M. Alper), Materials Research
Society, Pittsburgh, PA, 1989, pp. 45 – 50; c) S. Mann, D. D.
Archibald, J. M. Didymus, T. Douglas, B. R. Heywood, F. C.
Meldrum, N. J. Reeves, Science 1993, 261, 1286 – 1292; d) J. M.
Didymus, P. Oliver, S. Mann, A. L. Devries, P. V. Hauschka, P.
Westbroek, J. Chem. Soc. Faraday Trans. 1993, 89, 2891 – 2900;
e) A. Wierzbicki, C. S. Sikes, J. D. Madura, B. Drake, Calcif.
Tissue Int. 1994, 54, 133 – 141; f) C. Geffroy, A. Foissy, J. Persello,
B. Cabane, J. Colloid Interface Sci. 1999, 211, 45 – 53; g) D. K.
Keum, K.-M. Kim, K. Naka, Y. Chujo, J. Mater. Chem. 2002, 12,
2449 – 2452; h) K. Naka, Top. Curr. Chem. 2003, 228, 141 – 158.
[5] a) Y. Levi, S. Albeck, A. Brack, S. Weiner, L. Addadi, Chem.
Eur. J. 1998, 4, 389 – 396; b) S. R. Whaley, D. S. English, E. L. Hu,
P. F. Barbara, A. M. Belcher, Nature 2000, 405, 665 – 668; c) C.
Li, G. D. Botsaris, D. L. Kaplan, Cryst. Growth Des. 2002, 2, 387 –
393; d) M. Gilbert, J. W. Shaw, J. R. Long, K. Nelson, G. P.
Drobny, C. M. Giachelli, P. S. Stayton, J. Biol. Chem. 2000, 275,
16213 – 16218; e) B. Zhang, B. A. Wustman, D. E. Morse, J. S.
Evans, Biopolymers 2002, 63, 358 – 372; f) B. Zhang, G. Z. Xu,
J. S. Evans, Biopolymers 2000, 54, 464 – 475; g) B. A. Wustman,
D. E. Morse, J. S. Evans, Langmuir 2002, 18, 9901 – 9906;
h) B. A. Wustman, J. C. Weaver, D. E. Morse, J. S. Evans,
Connect. Tissue Res. 2003, 44, 10 – 15; i) G. He, T. Dahl, A.
Veis, A. George, Nat. Mater. 2003, 2, 552– 558.
[16] a) J. S. Evans, Curr. Opin. Colloid Interface Sci. 2003, 8, 48 – 54;
b) B. A. Wustman, J. C. Weaver, D. E. Morse, J. S. Evans,
Langmuir 2003, 19, 9373 – 9381.
[6] a) D. B. DeOliveria, R. A. Laursen, J. Am. Chem. Soc. 1997, 119,
10627 – 10631; b) D. J. H. Gaskin, K. Starck, E. N. Vulfson,
Biotechnol. Lett. 2000, 22, 1211 – 1216; c) P. K. Ajikumar, R.
Lakshminarayanan, S. Valiyaveettil, R. M. Kini, Biomacromol-
Angew. Chem. Int. Ed. 2005, 44, 5476 –5479ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5479