2
258
D. D. Miller et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2255–2258
Acknowledgements
The authors gratefully acknowledge Duncan Judd for technical
support in the provision of scaled-up quantities of key synthetic
intermediates, Lisa Shewchuk for obtaining the crystal structure
of 1 in CDK2, and all the members of the IKK-b team.
References and notes
1.
Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S. Science
002, 298, 1912.
2
2.
3.
4.
5.
6.
7.
Karin, M.; Yamamoto, Y.; Wang, Q. M. Nat. Rev. Drug Disc. 2004, 3, 17.
Pahl, H. L. Oncogene 1999, 18, 6853.
Hacker, H.; Karin, M. Sci. STKE. 2006, 357, re13.
Coish, D. G.; Wickens, P. L.; Lowinger, T. B. Expert Opin. Ther. Patents 2006, 16, 1.
Pitts, W. J.; Kempson, J. Annu. Rep. Med. Chem. 2008, 43, 155.
Bamborough, P.; Callahan, J. F.; Christopher, J. A.; Kerns, J. K.; Liddle, J.; Miller,
D. D.; Morse, M. A.; Rumsey, W. L.; Williamson, R. Curr. Topics Med. Chem. 2009,
9
, 623.
8.
Bamborough, P.; Morse, M. A.; Ray, K. P. Drug News Perspect. 2010, 23, 483.
Figure 9. Compound 14a docked into IKK-b homology model highlighting the
9. Li, J.; Peet, G. W.; Pullen, S. S.; Shembri-King, J.; Warren, T. C.; Marcu, K. B.;
putative interaction with Lys106.
Kehry, M. R.; Barton, R.; Jakes, S. J. Biol. Chem. 1998, 273, 30736.
0. Bonizzi, G.; Karin, M. Trends Immunol. 2004, 25, 280.
1
1
1. Christopher, J. A.; Avitable, B. G.; Bamborough, P.; Champigny, A. C.; Cutler, G.
J.; Dyos, S. L.; Grace, K. G.; Kerns, J. K.; Kitson, J. D.; Mellor, G. W.; Morey, J. V.;
Morse, M. A.; O’Malley, C. F.; Patel, C. B.; Probst, N.; Rumsey, W.; Smith, C. A.;
Wilson, M. J. Bioorg. Med. Chem. Lett. 2007, 17, 3972.
by docking studies which predicted that modifying the nitrogen to
an uncharged sulphonamide could permit hydrogen-bonding be-
tween an oxygen of the sulphonamide and the side-chain NH3
þ
12. Podolin, P. L.; Callahan, J. F.; Bolognese, B. J.; Li, Y. H.; Carlson, K.; Davis, T. G.;
Mellor, G. W.; Evans, C.; Roshak, A. K. J. J. Pharmacol. Exp. Ther. 2005, 312, 373.
of Lysine 106 or the backbone NH of Asp103 (Fig. 9).
1
1
3. Homology modelling, pharmacophore searching and docking were carried out
as described in Ref. 11.
Very promisingly, the enzyme inhibition of compounds 12 and
4. IKK-b kinase inhibitory activity was determined using
a time-resolved
1
4a translated into cellular efficacy in an assay measuring the com-
pounds’ ability to inhibit the LPS stimulated production of TNF- in
peripheral blood mononuclear cells (PBMC), each inhibiting with a
fluorescence resonance energy transfer (TR-FRET) assay. Recombinant GST-
tagged human IKK-b (1-737) (typically 2–5 nM final) diluted in assay buffer
a
(50 mM HEPES, 10 mM MgCl , 1 mM CHAPS pH 7.4 with 1 mM DTT and 0.01%
2
1
9
pIC50 of 6.2. Furthermore, compound 14a was found to inhibit
NF- B translocation in TNF- treated A549 cells potently, with a
pIC50 of 6.8.
w/v BSA) was added to wells containing compound or DMSO vehicle (less than
5
(
% final). The reaction was initiated by the addition of GST-I
25 nM final)/ATP (1 final), in a total volume of l. IKK-
inhibitory activity was determined similarly, using 6-His-tagged full length
IKK- . For further details see Ref.[11]. The error within both assays is estimated
j
B
a
substrate
a kinase
j
a
lM
6
l
1
9
Wider selectivity screening across an in-house panel of >45 ki-
nase assays showed an excellent profile for compounds 12 and 14a.
Both compounds had pIC50 <5.5 across the entire panel, which in-
a
as ±0.3 log units, based on the standard deviation around the mean value of an
inhibitor used as a standard compound in every assay.
15. Castro, A. C.; Dang, L. C.; Soucy, F.; Grenier, L.; Mazdiyasni, H.; Hottelet, M.;
Parent, L.; Pien, C.; Palombella, V.; Adams, J. Bioorg. Med. Chem. Lett. 2003, 13,
cluded IKK-
pIC50 = 5.9 and c-FMS pIC50 = 5.8; and 14a, BTK pIC50 = 5.8 and
Aurora A pIC50 = 5.9. In addition, 14a was screened at 10
e and TBK1, with the following exceptions: 12, BTK
2
419.
6. See discussion by Abad-Zapatero, C. Expert Opin. Drug Disc. 2007, 2, 469. Ligand
Efficiency LE = ꢀRT(ln K )/N, where N = number of heavy atoms. Here this is
approximated for relative comparision by exchanging IC50 for K
1
lM
i
20
against a panel of 105 kinases in a binding format. Where binding
was detected the K was determined. Only two kinases gave
pK > 5.5 (CSNK1 , pK = 5.8, and FLT3 pK = 5.9).
In addition to the excellent IKK-b and broader kinase profile ob-
i
.
17. Baldwin, I. R.; Bamborough, P.; Christopher, J. A.; Kerns, J. K.; Longstaff, T.;
Miller, D. D. WO 2005/067923.
d
d
e
d
d
1
8. Murata, T.; Shimada, M.; Kadono, H.; Sakakibara, S.; Yoshino, T.; Masuda, T.;
Shimazaki, M.; Shintani, T.; Fuchikami, K.; Bacon, K. B.; Ziegelbauer, K. B.;
Lowinger, T. B. Bioorg. Med. Chem. Lett. 2004, 14, 4013.
served in the series, exemplars also displayed favourable developa-
bility characteristics. For example, compound 12 had high aqueous
solubility (136 lg/ml), low protein binding (91% to Human Serum
Albumin), low in vitro clearance (human <1 ml/min/mg) and
1
2
9. Details of the PBMC and NF-jB cellular assays are described in Bamborough, P.;
Barker, M. D.; Campos, S. A,; Cousins, R. P. C.; Faulder, P.; Hobbs, H,; Holmes, D.
S.; Johnston, M. J.; Liddle, J.; Payne, J. J.; Pritchard, J. M.; Whitworth, C. WO
2008/034860.
0. The ability of compounds at 10 lM concentration to displace kinases from
encouraging oral bioavailability (22% in rat).
immobilized ATP-site probe ligands was determined as previously described,
see: Fabian, M. A.; Biggs, W. H., III; Treiber, D. K.; Atteridge, C. E.; Azimioara, M.
D.; Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen, P. T.; Floyd, M.; Ford, J. M.;
Galvin, M.; Gerlach, J. L.; Grotzfeld, R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.;
Lai, A. G.; Lélias, J.-M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L.
M.; Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J. Nat. Biotechnol. 2005, 23, 329.
In summary, pharmacophore directed screening was used to
identify a novel IKK-b inhibitor fragment template. Homology
model-based SAR exploration led to the discovery of potent, selec-
tive inhibitors with cellular efficacy. Key exemplars such as 12 and
1
4a exceeded the minimum target profile and preliminary DMPK
data and wider profiling augured well for further optimisation of
this new class of IKK-b inhibitors, which will be described in future
publications.