Table 2 Absorption maxima (nm), redox potentials (mV versus SCE) and Kc values for (9), (10) and (12) compared to [Ru(bpy)3]2+
a
b
Compound
UV-vis
Eox2
Eox1
946
946
866
Ered1
Ered2
Eox1 − Ered1
DEox
Kc
9rac
453 [22 400]
450 [21 500]
481 [10 600], 441 [11 300]
442 [10 800], 415 [10 500]
452
1306
1286
—
—
—
−1499
−1510
−1538
−1450
−1330
−1658
−1670
−1790
−1698
−1510
2445
2456
2404
2676
2590
360
340
—
—
—
1 200 000
560 000
—
9meso
10
12
1226
1260
—
—
[Ru(bpy)3]2+
a DEox = Eox2 − Eox1
.
b Comproportionation constant, Kc = exp{DEoxF/RT}, where F/RT takes the value 38.92 V−1 at 298 K.
a higher HOMO–LUMO gap, as reflected in a blue shift in the
MLCT absorption. The mononuclear complex (10), being singly-
charged, is considerably more easily oxidised than the doubly-
charged [Ru(bpy)3]2+ and is significantly more difficult to reduce.
The difference in the first redox potentials and the red-shifted
absorption indicate a smaller HOMO–LUMO gap relative to
[Ru(bpy)3]2+. The two stereoisomers of the binuclear complex
(9) each show two well-separated oxidation potentials (Fig. 5),
indicating strong metal–metal interactions, as seen in the large
Kc values. Indeed, these represent the highest Kc values of any
complexes of ligands of this type (Fig. 1). As was found to be
the case with the analogous complexes of the imidazolate (5), the
rac isomer shows stronger metal–metal interactions than the meso
isomer, when the counteranion is PF6−. The first reductions of
these isomers are at a similar potential to that of the mononuclear
analogue (10) and are probably associated with the ancillary bpy
ligands.
Notes and references
‡ Selected data for ligands: 8: Yield 62%. Mp 98–103 ◦C. 1H NMR
(500 MHz, CD3CN) d: 7.46 (dd, 2 H, J = 7.5, 5.0 Hz, H5), 7.98 (t,
2 H, J = 7.5 Hz, H4), 8.37 (d, 2 H, J = 7.3 Hz, H3), 8.70 (d, 2 H,
J = 4.6 Hz, H6). 13C NMR (75 MHz, CD3CN) d: 124.75, 124.79, 139.45,
149.12. ESMS: Calc. for C12H10N5 224.0936, found 224.0945. Calc. for
C12H9N5·4H2O: C, 48.81; H, 5.80; N, 23.72. Found: C, 49.10; H, 5.63; N,
23.83%. 11: Yield 37%. Mp 113–114 ◦C. 1H NMR (500 MHz, CDCl3) d:
5.57 (s, 2 H, CH2), 7.21 (dd, 1 H, J = 6.8, 5.3 Hz, H5ꢀ), 7.40–7.34 (m, 5 H,
phenyl), 7.77 (t, 1 H, J = 7.7 Hz, H4ꢀ), 8.07 (s, 1 H, H5), 8.18 (d, 1 H,
J = 8.1, H3ꢀ), 8.52 (d, 1 H, J = 4.6 Hz, H6ꢀ). 13C NMR (75 MHz, CDCl3)
d: 54.31, 120.18, 121.81, 128.25, 128.78, 129.11, 134.27, 136.90, 148.58,
149.20, 150.12. Calc. for C14H12N4: C, 71.15; H, 5.12; N, 23.72. Found: C,
71.40; H, 5.09; N, 23.61%.
¯
§ Summary of X-ray details: 8: C12H9N5·2H2O, M 259.27, triclinic, P1,
˚
Z = 2, a = 7.4884(3), b = 9.1666(3), c = 9.8501(3) A, a = 66.450(2),
◦
3
˚
b = 84.740(2), c = 76.235(2) , V = 602.02(4) A , T = 148 K, Rint
=
0.031, wR2 (all 3468 data) = 0.122, R1 [3163 data with I>2r(I)]
0.038; 9rac: C52H40N13Ru2·3(PF6)·0.5(C4H10O)·1.5(CH3CN), M 3159.06,
¯
triclinic, P1, Z = 2, a = 13.4722(5), b = 13.6208(5), c = 19.1473(7)
◦
3
˚
˚
A, a = 73.191(2), b = 87.006(2), c = 70.094(2) , V = 3158.3(2) A ,
T = 101 K, Rint = 0.038, wR2 (all 11120 data) = 0.247, R1 [7920
data with I>2r(I)] 0.075; 12: C34H28N8Ru·2(PF6)·C3H6O·0.5H2O, M
1005.73, monoclinic, P21/c, Z = 4, a = 11.6741(3), b = 14.0245(4),
◦
3
˚
˚
c = 26.2735(8) A, b = 98.946(2) ,V = 4249.3(2) A , T = 123 K,
Rint = 0.041, wR2 (all 7693 data) = 0.161, R1 [6515 data with I>2r(I)]
0.048.
¶ Selected data for complexes: 9: Yield 93%. ESMS: Calc. for C52H40N13Ru2
350.0539, found 350.0542. Calc. for C52H40N13F18P3Ru2·H2O: C, 41.58; H,
2.82; N, 12.12. Found: C, 41.42; H, 2.90; N, 11.89%. 9rac: 1H NMR
(500 MHz, CD3CN) d: 8.50 (d, 1 H, bpyA H3), 8.48 (d, 1 H, H3), 8.45
(d, 1 H, bpyB H3), 8.42 (d, 1 H, bpyC H3), 8.23 (d, 1 H, bpyD H3), 8.15
(t, 1 H, bpyC H4), 8.04 (m, 3 H, H4 and bpyA H6 and bpyA H4), 7.97
(m, 2 H, bpyA H6 and bpyD H4), 7.85 (t, 1 H, bpyD H4), 7.77 (d, 1 H,
H6), 7.53 (t, 1 H, bpyA H5), 7.44 (m, 2 H, bpyA H5 and bpyD H6), 7.28
(t, 1 H, H5), 7.18 (t, 1 H, bpyD H5), 7.05 (t, 1 H, bpy B H5), 6.85 (d, 1 H,
H6). 9meso: 1H NMR (500 MHz, CD3CN) d: 8.54 (m, 2 H, bpyA H3 and
bpyB H3), 8.47 (d, 1 H, H3), 8.27 (m, 2 H, bpyC H3 and bpyD H3), 8.10
(d, 1 H, bpyA H6), 8.06 (t, 1 H, bpyA H4), 8.03 (m, 2 H, bpyB H4 and
H4), 7.88 (m, 2 H, bpyC H4 and bpyD H4), 7.84 (d, 1 H, bpyB H6), 7.67
(d, 1 H, H6), 7.52 (m, 2 H, bpyC H6 and bpyD H6), 7.48 (t, 1 H, bpyA
H5), 7.37 (t, 1 H, bpyB H5), 7.24 (t, 1 H, H5), 7.10 (m, 2 H, bpyC H5 and
bpyD H5). 10: Yield 65%. 1H NMR (500 MHz, CD3CN) d: 9.88 (d, 1 H,
H3), 8.78 (d, 1 H, H6ꢀ), 8.54 (d, 1 H, bpyA H3), 8.52 (d, 1 H, bpyB H3),
8.49 (d, 1 H, bpyC H3), 8.47 (d, 1 H, bpyD H3), 8.24 (d, 1 H, H3ꢀ), 8.07 (t,
1 H, bpyA H4), 8.02 (m, 2 H, bpyB H4 and bpyC H4), 8.01 (t, 1 H, bpyD
H4), 7.98 (d, 1 H, bpyA H6), 7.97 (d, 1 H, bpyC H6), 7.91 (t, 1 H, H4),
7.90 (t, 1 H, H4ꢀ), 7.87 (d, 1 H, bpyD H6), 7.78 (d, 1 H, bpyB H6), 7.63 (d,
1 H, H6), 7.44 (t, 2 H, bpyA H5), 7.43 (t, 1 H, bpyB H5), 7.40 (t, 1 H, bpyC
H5), 7.36 (t, 1 H, bpyD H5 and H5ꢀ), 7.14 (t, 1 H, H5). ESMS Calc. for
C32H24N9Ru 636.1198, found 636.1215. Calc. for C32H24N9F6PRu·2H2O:
C, 47.06; H, 3.46; N, 15.44. Found: C, 47.23; H, 3.28; N, 14.81. 12: Yield
70%. 1H NMR (500 MHz, CD3CN) d: 8.69 (s, 1 H, H5), 8.57 (d, 2 H, bpyA
and bpyB H3), 8.52 (d, 1 H, bpyC H3), 8.49 (d, 1H, bpyD H3), 8.13 (m,
4 H, bpyA, bpyB and bpyC H4, H3), 8.07 (t, 1 H, bpyD H4), 8.03 (t, 1 H,
H4), 7.93 (m, 2 H, bpyA and bpy B H6), 7.87 (d, 1 H, bpyC H6), 7.81 (d,
1 H, bpyD H6), 7.66 (d, 1 H, H6), 7.51 (t, 1 H, bpyA H5), 7.48 (t, 1 H,
bpyB H6), 7.47 (t, 1 H, bpyC H6), 7.44 (m, 3 H, m- and p-phenyl), 7.40
(t, 1 H, bpyD H6), 7.34 (t, 1 H, H5), 7.22 (d, 2 H, o-phenyl), 5.59 (s, 2 H,
CH2). ESMS Calc. for C34H28N8Ru 325.0740, found 325.0759. Calc. for
Fig. 5 Cyclic voltammogram of (9meso).
In conclusion, we have synthesised the new bridging ligand
(8), which exists in the solid state in a zwitterionic form. We
believe that this ligand will find use as a versitile synthon for the
formation of metal complexes of varying nuclearity. Furthermore,
it represents a new addition to the family of ligands that form
dinuclear ruthenium(II) complexes which exhibit strong metal–
metal interactions, and is the first such example that is both anionic
and has a heteroatom between the two chelating nitrogens.
We thank the Australian Research Council, the Royal Society of
New Zealand Marsden Fund and the University of Canterbury for
financial support of this work. PJS also thanks the RSNZ for the
award of a James Cook Research Fellowship. CMF thanks James
Cook University for the award of a post-doctoral fellowship.
2536 | Dalton Trans., 2008, 2534–2537
This journal is
The Royal Society of Chemistry 2008
©