Published on Web 09/22/2006
Octahedral Non-Heme Oxo and Non-Oxo Fe(IV) Complexes:
An Experimental/Theoretical Comparison
†
‡
John F. Berry, Eckhard Bill, Eberhard Bothe, Frank Neese, and Karl Wieghardt*
Contribution from the Max-Planck-Institut f u¨ r Bioanorganische Chemie, Stiftstrasse 34-36,
D-45470 M u¨ lheim an der Ruhr, Germany
Abstract: Electron-transfer series are described for three ferric complexes of the pentadentate ligand 4,8,11-
trimethyl-1,4,8,11-tetraazacyclotetradecane-1-acetate (Me cyclam-acetate) with axial chloride, fluoride, and
3
azide ligands. These complexes can all be reduced coulometrically to their Fe(II) analogs and oxidized
reversibly to the corresponding Fe(IV) species. The Fe(II), Fe(III), and Fe(IV) species have been studied
spectroscopically and their UV-vis, M o¨ ssbauer, EPR, and IR spectra are presented. The fluoro species
n+
[
(
3
(Me cyclam-acetate)FeF] (n ) 0, 1, 2) have been studied computationally using density functional theory
2+
DFT), and the electronic structure of the Fe(IV) dication [(Me
that of the isoelectronic Fe(IV) oxo cation [(Me
3
cyclam-acetate)FeF] is compared with
cyclam-acetate)FeO] ; the different properties of the two
+
3
species are mainly due to the significantly covalent FedO π bonds in the latter.
Introduction
highly oxidized corrolate complexes, some of which have been
7
claimed as examples of Fe(IV) complexes, but corroleate
Iron is the most prominent transition metal in biological
systems and is known to play an active role in the catalytic
cycles of many metalloenzymes. By far, the most common
oxidation states of iron in proteins are the +2 and +3 states,
though higher oxidation states (+4 and +5) are often proposed
for specific intermediates in oxygen-activating enzymes and
8
ligands are also fairly easily oxidized, and it is believed that
1
these complexes are, in fact, Fe(III) complexes of corrolate
9
,10
radicals.
In non-heme iron systems, the ligands bound to iron are
generally considered to be redox-innocent, and intermediates
containing Fe(IV) or Fe(V) have been postulated, and a high-
spin Fe(IV)-oxo intermediate has been observed and studied
spectroscopically in the case of the enzyme taurine/R-ketoglu-
2
-5
model systems.
Because of these proposals, the chemistry
of heme and non-heme iron in its high valent states is currently
of intense interest, and synthetic routes to stable forms of these
species have been sought.
1
1
tarate dioxygenase. In addition to work done by other groups
1
2-17
in the synthesis and characterization of Fe(IV) complexes,
A problem encountered in the chemistry of heme complexes
in their higher oxidation states is that the porphyrin ligand itself
can also be oxidized forming a π radical. In fact, in the class of
oxidizing enzymes known as cytochromes P450, intermediates
known as “Compound I” are believed to be the most active
species in the catalytic cycle ultimately responsible for the
hydroxylation of C-H bonds in substrates and are also believed
to contain an Fe(IV)-oxo unit coordinated to an oxidized
18
our laboratory has produced evidence for mono- and di-
19
18,20
nuclear Fe(IV) complexes, Fe(V) complexes,
and recently
21
even Fe(VI) species. For the mononuclear complexes, we have
(7) Simkhovich, L.; Goldberg, I.; Gross, Z. Inorg. Chem. 2002, 41, 5433.
(
8) Shen, J.; Shao, J.; Ou, Z.; E, W.; Koszarna, B.; Gryko, D. T.; Kadish, K.
M. Inorg. Chem. 2006, 45, 2251.
(9) Nardis, S.; Paolesse, R.; Licoccia, S.; Fronczek, F. R.; Vicente, M. G. H.;
Shokhireva, T. K.; Cai, S.; Walker, F. A. Inorg. Chem. 2005, 44, 7030.
10) Walker, F. A.; Licoccia, S.; Paolesse, R. J. Inorg. Biochem. 2006, 100,
810.
(
(
6
porphyrin radical. In such species, the oxidation state of the
iron would actually be higher if it were not for the oxidation of
the porphyrin. Similar considerations have led to ambiguity in
11) Price, J. C.; Barr, E. W.; Tirupati, B.; Bollinger, J. M.; Krebs, C.
Biochemistry 2003, 42, 7497.
(12) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2004, 126, 6252.
(
13) Cummins, C. C.; Schrock, R. R. Inorg. Chem. 1994, 33, 395.
†
(14) Chanda, A.; Popescu, D.-L.; de Oliveira, F. T.; Bominaar, E. L.; Ryabov,
Current address: Department of Chemistry, University of Wisconsins
A. D.; M u¨ nck, E.; Collins, T. J. J. Inorg. Biochem. 2006, 100, 606.
Madison, 1101 University Avenue, Madison, WI 53706.
(
15) Jensen, M. P.; Costas, M.; Ho, R. Y. N.; Kaizer, J.; Payeras, A. M. I.;
M u¨ nck, E.; Que, L., Jr.; Rohde, J. U.; Stubna, A. J. Am. Chem. Soc. 2005,
127, 10512.
‡
Current address: Institut f u¨ r Physicalische und Theoretische Chemie,
Universit a¨ t Bonn, D-53115 Bonn, Germany.
(
(
(
(
(
(
1) Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; University
(16) Pestovsky, O.; Stoian, S.; Bominaar, E. L.; Shan, X. P.; M u¨ nck, E.; Que,
L., Jr.; Bakac, A. Angew. Chem., Int. Ed. 2005, 44, 6871.
(17) Pestovsky, O.; Stoian, S.; Bominaar, E. L.; Shan, X.; M u¨ nck, E.; Que, L.,
Jr.; Bakac, A. Angew. Chem., Int. Ed. 2006, 45, 340.
(18) Grapperhaus, C. A.; Mienert, B.; Bill, E.; Weyherm u¨ ller, T.; Wieghardt,
K. Inorg. Chem. 2000, 39, 5306.
(19) Slep, L. D.; Mijovilovich, A.; Meyer-Klaucke, W.; Weyherm u¨ ller, T.; Bill,
E.; Bothe, E.; Neese, F.; Wieghardt, K. J. Am. Chem. Soc. 2003, 125, 15554.
(20) Meyer, K.; Bill, E.; Mienert, B.; Weyherm u¨ ller, T.; Wieghardt, K. J. Am.
Chem. Soc. 1999, 121, 4859.
(21) Berry, J. F.; Bill, E.; Bothe, E.; George, S. D.; Mienert, B.; Neese, F.;
Wieghardt, K. Science 2006, 312, 1937.
Science Books: Mill Valley, CA, 1994.
2) Merkx, M.; Kopp, D. A.; Sazinsky, M. H.; Blazyk, J. L.; Muller, J.; Lippard,
S. J. Angew. Chem., Int. Ed. 2001, 40, 2782.
3) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Jr. Chem. ReV. 2004,
1
04, 939.
4) Bassan, A.; Blomberg, M. R. A.; Siegbahn, P. E. M.; Que, L., Jr. Angew.
Chem., Int. Ed. 2005, 44, 2939.
5) See the following special issue dedicated to Fe(IV) chemistry: Ghosh, A.
J. Inorg. Biochem. 2006, 100, 419.
6) Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. ReV. 1996,
9
6, 2841.
10.1021/ja063590v CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 13515-13528
9
13515