T. S. R. Prasanna, K. Mohanaraju / Tetrahedron Letters 52 (2011) 6971–6973
6973
OH
Br
Step 1
NMe Br
NMe3 Br2
3
3
CH3
S
H
CH3
S
O
CH3
CHO
Br
S
Step 2
O
CH3
H C
CH3
3
Scheme 2. Proposed mechanism for the oxidation of alcohols to carbonyl compounds using polymer bromide-DMSO.
4
.
.
(a) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651; (b) Pfitzner, K. E.; Moffatt,
J. G. J. Am. Chem. Soc. 1963, 85, 3027; (c) Parikh, J. R.; Doering, W. E. J. Am. Chem.
Soc. 1967, 89, 5505.
Table 2
Recovery and reusability of polymer bromide in the conversion of 4-chlorobenzyl
alcohol to 4-chlorobenzaldehyde
5
Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
Yield of producta,b (%)
6.
Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.
(a) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem. 1987, 52, 2559; (b)
Rozantsev, E. G.; Sholle, V. D. Synthesis 1971, 190; (c) Leanna, M. R.; Sowin, T. J.;
Morton, H. E. Tetrahedron Lett. 1992, 33, 5029.
(a) Uyanik, M.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251; (b)
Surendra, K.; Srilakshmi, K. N.; Arjun Reddy, M.; Nageswar, Y. V. D.; Rama Rao,
K. J. Org. Chem. 2003, 68, 2058; (c) Bolm, C.; Magnus, A. S.; Hildebrand, J. P. Org.
Lett. 2000, 2, 1173; (d) Park, H. J.; Lee, J. C. Synlett 2009, 79; (e) Gheorghe, A.;
Chinnusamy, T.; Cuevas-Yañez, E.; Hilgers, P.; Reiser, O. Org. Lett. 2008, 10,
Entry
Cycles
Recovery of resin (wt %)
7.
1
2
3
4
I
II
III
IV
96
95
94
94
93
91
90
90
8.
a
Isolated yields.
Ref. 14i.
b
4171; (f) Vatèle, J. M. Synlett 2006, 2055; (g) Jiang, N.; Ragauskas, A. J. J. Org.
Chem. 2007, 72, 7030; (h) Kim, S. S.; Jung, H. C. Synthesis 2003, 2135; (i) Yang,
G.; Wang, W.; Zhu, W.; An, C.; Gao, X.; Song, M. Synlett 2010, 437.
9
.
An improved procedure for 2-amino-5-nitro-4,6-diarylcyclohex-1-ene-1,3,3-
tricarbonitriles; Carbonate on polymer support (Amberlyst A-26 NaCO3 ) as
mild and reusable catalyst. Prasanna. T.S.R.; Mohanraju. K. Paper accepted in
Journal of Korean Chemical Society 2011 (K-11-OC-034-A).
This makes the resin reusability possible eliminating the drawback
of the cost factor.
À
In summary we have developed and demonstrated a novel use
À
10. Smith, K.; James, M.; Matthews, I.; Bye, M. R. J. Chem. Soc., Perkin Trans. 1 1992,
877.
of polymer tribromide, amberlyst A 26-Br3 for the oxidation of
1
benzylic alcohols to the corresponding carbonyl compounds.
When compared to the previously reported procedures our meth-
od offers several advantages. The reaction is done at room tem-
perature, a broad range of substituents are tolerated, and the
recovery and reusability of the resin makes the entire protocol
economical and environment friendly. Although the protocol is
similar to Corey–Kim oxidation, the amount of bad smelling, vol-
atile and poisonous dimethyl sulfide released into the environ-
ment is only stoichiometric which is far less than the amount
required by Corey–Kim oxidation where the amount of dimethyl
sulfide employed varies from 2.5 to 5 equiv. Taken together, the
use of polymer tribromide for the oxidation of benzylic alcohols
to carbonyl compounds represents an approach suitable for prac-
ticing green chemistry and thus should find wide application in
organic synthesis.
1
1
1
1. (a) Cacchi, S.; Caglioti, L. Synthesis 1979, 64; (b) Ploypradith, P.; Kagan, R. K.;
Ruchirwat, S. J. Org. Chem. 2005, 70, 5119.
2. Gopalakrishnan, G.; Kasinath, V.; Pradeep Singh, N. D.; Santhana Krishnan, V.
P.; Anand Soloman, K.; Rajan, S. S. Molecules 2002, 7, 412.
3. Jacques, J.; Marquet, J. Organic Synthesis 1988, 6, 175.
14. General Procedure for the oxidation of alcohols to carbonyl compounds.
i) Procedure for alcohols not containing acid-sensitive groups.
(
To a mixture of alcohol in dry DMSO (10 volume) was added 1 equiv of
polymer bromide and the reaction mixture was stirred at room temperature
for a given period of time (Table 1). After the completion of the reaction, the
reaction mixture was filtered and the polymer bed washed with DMSO.
Combined DMSO layers were quenched with ice–water mixture and extracted
with ether. The ether layer was given water wash, brine wash, dried over
anhydrous sodium sulphate, and concentrated to get the pure carbonyl
compounds. All the products were characterized by NMR and MS analysis.
(
ii) Procedure for alcohols containing acid-sensitive groups.
To a mixture of alcohol in dry DMSO/THF (10 volume, 50:50 mixture) was
added 1 equiv of polymer bromide and the reaction mixture was stirred at
room temperature for a given period of time (Table 1). After completion of the
reaction, the reaction mixture was filtered and the polymer bed was washed
with THF. Combined DMSO/THF layers were quenched with ice–water mixture
and extracted with ether. The ether layer was given water wash, brine wash,
dried over anhydrous sodium sulphate, and concentrated to get the pure
carbonyl compounds.
References and notes
1
.
.
(a) Shuttleworth, S. J.; Allin, S. M.; Wilson, R. D.; Nasturica, D. Synthesis 2000,
035; (b) Bhalay, G.; Dunstan, A.; Glen, A. Synlett 2000, 1846.
For a review of polymer-supported reagents, see: (a) Ley, S. V.; Baxendale, I. R.;
Bream, R. N.; Jackson, P. S.; Leach, A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.;
Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perkin Trans. 1 2000, 3815 (special review
issue); (b) Petchmanee, T.; Ploypradith, P.; Ruchirawat, S. J. Org. Chem. 2006, 71,
1
Selected spectral data
2
4-bromobenzaldehyde (3b)
Mp: 59–60 °C, H NMR (CDCl , 400 MHz): d (ppm) 7.6 (m, 4H), 9.9 (s, 1H). 13C
1
3
NMR (CDCl3 400 MHz); d 129.5, 131.8, 132.3, 135.0 and 190.8. Analysis:
C H BrO requires C: 45.44, H: 2.72, Br: 43.18; found C: 45.44, H: 2.70, Br:
7
5
7
(
6
82; (c) Flowers, R. A.; Xu, X.; Timmoons, C.; Li, G. Eur. J. Org. Chem. 2004, 2988;
d) Pennington, T. E.; Kardiman, C.; Hutton, C. A. Tetrahedron Lett. 2004, 45,
657; (e) Chiang, G. C. H.; Olsson, T. Org. Lett. 2004, 6, 3079; (f) Tashino, Y.;
43.18.
4-nitrobenzaldehyde (4b)
1
Mp: 105–106 °C, H NMR (CDCl , 400 MHz): d (ppm) 7.6 (d, 2H, J = 9 Hz), 8.37
3
(d, 2H, J = 9 Hz). 13C NMR (CDCl , 400 MHz); d 123.5, 130.8, 139.3, 150.0 and
Togo, H. Synlett 2004, 2010; (g) Jaunzems, J.; Kashin, D.; Schonberger, A.;
Kirschning, A. Eur. J. Org., Chem. 2004, 3435.
3
190.8. Analysis: C H NO requires C: 55.63, H: 3.34, N: 9.26 found; C: 55.62, H:
7
5
3
3
.
Collins, J. C.; Hess, W. W.; Frank, F. J. Tetrahedron Lett. 1968, 9, 3363.
3.33, Br: 9.26.