J. C. Legeay et al. / Tetrahedron 63 (2007) 12081–12086
12085
H-900, H-1000, H-1200); 4.13 (q, 2H, J¼7.2 Hz, CH2CH3); 4.45
(s, 2H, H-400); 7.14–7.37 (m, 4H, H-60, H-50, H-40, H-30); 7.90
(s, 1H, H-3). 13C NMR (75 MHz, acetone-d6) d: 13.63
(CH3CH2); 50.56 (C-1300); 61.47 (CH2CH3); 69.92–70.57–
70.98 (C-120, C-70, C-60, C-90, C-100); 74.88 (C-400);
126.56–129.47–129.67–131.15 (C-60, C-50, C-40, C-30);
132.26 (C-10); 133.69 (C-20); 134.53 (C-2); 139.90 (C-3);
166.07 (C-1); 194.44 (C-300).
4-(2-chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-di-
carboxylate 9 in 74% yield as a yellowish oil. H NMR
1
(300 MHz, CDCl3) d: 1.11 (t, 3H, J¼7.1 Hz, OCH2CH3);
2.07 (br s, 2H, NH2); 2.29 (s, 3H, CH3); 2.84 (br s, 2H, H-
16); 3.48 (br s, 2H, H-15); 3.54 (s, 3H, OCH3); 3.61–3.64
(m, 8H, H-9, H-10, H-12, H-13); 3.97 (dq, 2H, J¼7.2,
1.3 Hz, OCH2CH3); 4.62 (d, 1H, J¼16.4 Hz, H-7); 4.73 (d,
1H, J¼16.5 Hz, H-7); 5.34 (s, 1H, H-4); 6.97 (dt, 1H,
J¼7.7, 1.6 Hz, H-40); 7.06 (dt, 1H, J¼7.4, 1.2 Hz, H-50);
7.16 (dd, 1H, J¼7.9, 1 Hz, H-30); 7.31 (dd, 1H, J¼7.7,
1.5 Hz, H-60); 7.51 (br s, 1H, NH). 13C NMR (75 MHz, ace-
tone-d6) d: 14.10 (OCH2CH3); 18.96 (CH3); 37.07 (C-4);
41.42 (C-16); 50.55 (OCH3); 59.55 (OCH2CH3); 67.72 (C-
7); 69.99–70.44–70.46 (C-9, C-10, C-12, C-13); 72.82 (C-
15); 101.35 (C-5); 103.53 (C-3); 126.66–127.11–129.00–
131.32 (C-60, C-50, C-40, C-30); 132.10 (C-20); 144.30 (C-
2); 145.53 (C-6); 145.70 (C-10); 167.04 (CO2CH3); 167.89
(CO2Et). HRMS m/z: found 497.2054 (calculated for
C24H34 N2O735Cl [M+H]+ requires 497.2055).
4.5. 3-Ethyl 5-methyl 2-[(2-(2-(2-azidoethoxy)ethoxy)-
ethoxy)methyl]-4-(2-chlorophenyl)-6-methyl-1,4-
dihydropyridine-3,5-dicarboxylate (8)
In a 50 mL round-bottomed flask fitted with a reflux
condenser, a solution of ethyl 4-{[2-[2-(2-azidoethoxy)eth-
oxy]ethoxy]acetyl}-3-(2-chlorophenyl)acrylate 6 (392 mg,
0.92 mmol) and methyl 3-methylaminocrotonate 7 (110 mg,
0.92 mmol) in absolute ethanol (10 mL) was refluxed under
vigorous magnetic stirring for 60 h. The solvent was elimi-
nated in a rotary evaporator under reduced pressure and the
crude residue was purified by column chromatography on sil-
ica gel with CH2Cl2/AcOEt (9:1) as eluent. Pooling of the ap-
propriate fractions (Rf¼0.4) and evaporation in vacuo
afforded a residue in 53% yield containing the desired com-
pound 8 as a yellowish oil. 1H NMR (300 MHz, CDCl3) d:
1.11 (t, 3H, J¼7.1 Hz, OCH2CH3); 2.28 (s, 3H, CH3); 3.32
(t, 2H, J¼4.9 Hz, H-16); 3.55 (s, 3H, OCH3); 3.58–3.67
(m, 10H, H-9, H-10, H-12, H-13, H-15); 3.97 (dq, 2H,
J¼7.2, 1.4 Hz, OCH2CH3); 4.64 (d, 1H, J¼16.8 Hz, H-7);
4.73 (d, 1H, J¼16.8 Hz, H-7); 5.36 (s, 1H, H-4); 6.97 (dt,
1H, J¼7.7, 1.7 Hz, H-40); 7.06 (dt, 1H, J¼7.6, 1.3 Hz, H-
50); 7.16 (dd, 1H, J¼7.8, 1.3 Hz, H-30); 7.30 (dd, 1H,
J¼7.7, 1.7 Hz, H-60); 7.36 (br s, 1H, NH). 13C NMR
(75 MHz, acetone-d6) d: 14.07 (OCH2CH3); 19.11 (CH3);
37.04 (C-4); 50.42 (C-16); 50.53 (OCH3); 59.51
(OCH2CH3); 67.76 (C-7); 69.84–70.06–70.42–70.57 (C-9,
C-10, C-12, C-13, C-15); 101.07 (C-5); 103.60 (C-3);
126.64–127.10–128.97–131.30 (C-60, C-50, C-40, C-30);
132.07 (C-20); 144.11 (C-2); 145.59 (C-6); 145.65 (C-10);
166.97 (CO2CH3); 167.86 (CO2Et). HRMS m/z: found
521.1801 (calculated for C24H30 N4O735Cl [MꢂH]+ requires
521.1803).
Acknowledgements
ꢁ
One of us (J.C.L.) wishes to thank the ‘Ministere de la
Recherche et de l’Enseignement Superieur’ for a research
ꢀ
ꢀ
fellowship. We also thank Dr. Pierre Guenot (CRMPO) for
the mass spectrometry measurements.
References and notes
1. (a) Janis, R. A.; Silver, P. J.; Triggle, D. J. Adv. Drug Res. 1987,
16, 309–314; (b) Bossert, F.; Vater, W. Med. Res. Rev. 1989, 9,
291–324.
2. (a) Janis, R. A.; Triggle, D. J. J. Med. Chem. 1983, 26, 775–
785; (b) Loev, B.; Goodman, M. M.; Snader, K. M.;
Tedeschi, R.; Macko, E. J. Med. Chem. 1974, 17, 956–965.
´
3. Aouam, K.; Berdeaux, A. Therapie 2003, 58, 333–339.
4. Alker, D.; Campbell, S. F.; Cross, P. E.; Burgess, R. A.; Carter,
A. J.; Gardiner, D. G. J. Med. Chem. 1989, 32, 2381–2388.
5. Alker, D.; Burges, R. A.; Campbell, S. F.; Carter, A. J.; Cross,
P. E.; Gordiner, D. G.; Humphrey, M. J.; Stopher, D. A.
J. Chem. Soc., Perkin Trans. 2 1992, 1137–1140.
4.6. 3-Ethyl 5-methyl 2-[(2-(2-(2-aminoethoxy)-
ethoxy)ethoxy)methyl]-4-(2-chlorophenyl)-6-methyl-
1,4-dihydropyridine-3,5-dicarboxylate (9)
6. Arrowsmith, J. E.; Campbell, S. F.; Cross, P. E.; Burges, R. A.;
Gardiner, D. G. J. Med. Chem. 1989, 32, 562–568.
7. Arrowsmith, J. E.; Campbell, S. F.; Cross, P. E.; Stubbs, J. K.;
Burges, R. A.; Gardiner, D. G.; Blackburn, R. A. J. Med. Chem.
1986, 26, 1696–1702.
In a 50 mL two-necked round-bottomed flask fitted with a
reflux condenser, provided with a magnetic stirrer, 3-ethyl
5-methyl 2-[(2-(2-(2-azidoethoxy)ethoxy)ethoxy)methyl]-
4-(2-chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicar-
boxylate 8 (228 mg, 0.44 mmol) and triphenylphosphine
(150 mg, 0.56 mmol) were dissolved in freshly distilled tet-
rahydrofuran (5 mL). The homogeneous solution was mixed
at room temperature for 2 h, after which deionized water
(200 mL, 11.1 mmol) was added in one portion. The reaction
mixture was refluxed for 48 h and cooled down to room tem-
perature. The mixture was concentrated in a rotary evapora-
tor and the crude residue was submitted to purification by
chromatography on a column of neutral alumina gel using
CH2Cl2/AcOEt (9:1) as eluent. Pooling and evaporation of
the appropriate fraction (Rf¼0.58) gave the expected 3-ethyl
5-methyl 2-[(2-(2-(2-aminoethoxy)ethoxy)ethoxy)methyl]-
8. Liang, J. C.; Yeh, J. L.; Wang, C. S.; Liou, S. F.; Tsai, C. H.;
Chen, I. J. Bioorg. Med. Chem. 2002, 10, 719–730.
9. (a) Caron, G.; Ermondi, G.; Damiano, A.; Navaroli, L.;
Tsinman, O. K.; Ruell, J. A.; Avdeef, A. Bioorg. Med. Chem.
2004, 12, 6107–6118; (b) Taniwa, T.; Miyataka, M.; Kimura,
A.; Taniguchi, M.; Hirano, Y.; Hayashi, T.; Ishikawa, K.
Circ. J. 2005, 69, 1308–1314.
ꢀ
10. (a) Multicomponent Reaction;Zhu, J., Bienayme, H., Eds.; Wiley-
VCH: Weinheim, Germany, 2005; (b) Legeay, J. C.; Vanden
Eynde, J. J.; Bazureau, J. P. Tetrahedron 2005, 61, 12386–12397.
11. (a) Campbell, S. F. U.S. Patent 4,572,909, 1986; (b) Alker, D.;
Campbell, S. F.; Cross, P. E. U.S. Patent 4,892,881, 1990.
12. The 1,4-DHP nucleus was built by Diels–Alder reaction, see:
Kim, S. C.; Choi, K. M.; Cheong, C. S. Bull. Korean Chem.
Soc. 2002, 23, 143–144.